Skip to main content
Log in

Large eddy simulation of unconfined turbulent swirling flow

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Large eddy simulations (LES) were performed to study the non-reacting flow fields of a Cambridge swirl burner. The dynamic Smagorinsky eddy viscosity model is used as the sub-grid scale turbulence model. Comparisons of experimental data show that the LES results are capable of predicting mean and root-mean-square velocity profiles. The LES results show that the annular swirling flow has a minor impact on the formation of the bluff-body recirculation zone. The vortex structures near the shear layers, visualized by the iso-surface of Q-criterion, display ring structures in non-swirling flow and helical structures in swirling flow near the burner exit. Spectral analysis was employed to predict the occurrence of flow oscillations induced by vortex shedding and precessing vortex core (PVC). In order to extract accurately the unsteady large-scale structures in swirling flow, a three-dimensional proper orthogonal decomposition (POD) method was developed to reconstruct turbulent fluctuating velocity fields. POD analysis reveals that flow fields contain co-existing helical and toroidal shaped coherent structures. The helical structure associated with the PVC is the most energetic dynamic flow structure. The latter toroidal structure associated with vortex shedding has lower energy content which indicates that it is a secondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge B, Zang S S. Experimental study on the interactions for bluffbody and swirl in stabilized flame process. J Therm Sci, 2012; 21: 88–96

    Article  Google Scholar 

  2. Alkidas A C. Combustion advancements in gasoline engines. Energ Convers Manage, 2007; 48: 2751–2761

    Article  Google Scholar 

  3. Mansour A. Gas turbine fuel injection technology. In: ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA, 2005

    Google Scholar 

  4. Lucca-Negro O, O'doherty T. Vortex breakdown: A review. Prog Energ Combust, 2001; 27: 431–481

    Article  Google Scholar 

  5. Esquiva-Dano I, Nguyen H, Escudie D. Influence of a bluff-body’s shape on the stabilization regime of non-premixed flames. Combust Flame, 2001; 127: 2167–2180

    Article  Google Scholar 

  6. Escudier M. Vortex breakdown: Observations and explanations. Prog Aerosp Sci, 1988; 25: 189–229

    Article  Google Scholar 

  7. Ayache S V. Simulations of turbulent swirl combustors. Dissertation for the Doctoral Degree. Cambridge: University of Cambridge, 2012

    Google Scholar 

  8. Leibovich S. Vortex stability and breakdown-survey and extension. AIAA J, 1984; 22: 1192–1206

    Article  Google Scholar 

  9. Gallaire F, Chomaz J. Mode selection in swirling jet experiments: A linear stability analysis. J Fluid Mech, 2003; 494: 223–253

    Article  MATH  MathSciNet  Google Scholar 

  10. Vonnegut B. A vortex whistle. J Acoust Soc Am, 1954; 26: 18–20

    Article  Google Scholar 

  11. Syred N, Beer J. Damping of precessing vortex cores by combustion in swirl generators. Astronautica Acta, 1972, 17: 783

    Google Scholar 

  12. Al-Abdeli Y M, Masri A R. Precession and recirculation in turbulent swirling isothermal jets. Combust Sci Tech, 2004; 176: 645–665

    Article  Google Scholar 

  13. Syred N, Wong C, Rodriquez-Martinez V, et al. Characterisation of the occurrence of the precessing vortex core in partially premixed and non-premixed swirling flow. In: Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2004

    Google Scholar 

  14. Krüger O, Duwig C, Goeckeler K, et al. Identification of coherent structures in a turbulent generic swirl burner using large eddy simulations. In: 20th AIAA Computational Fluid Dynamics Conference, Hawaii, USA, 2011

    Google Scholar 

  15. Krüger O, Terhaar S, Paschereit C O, et al. Numerical investigations and modal analysis of the coherent structures in a generic swirl burner. In: 21st AIAA Computational Fluid Dynamics Conference, San Diego, USA, 2013

    Google Scholar 

  16. García-Villalba M, Fröhlich J, Rodi W. Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation. Phys Fluids, 2006, 18: 055103

    Article  Google Scholar 

  17. Cala C, Fernandes E, Heitor M, et al. Coherent structures in unsteady swirling jet flow. Exp Fluids, 2006; 40: 267–276

    Article  Google Scholar 

  18. Syred N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energ Combust, 2006; 32: 93–161

    Article  Google Scholar 

  19. Ren Z, Lu Z, Hou L, et al. Numerical simulation of turbulent combustion: scientific challenges. Sci China-Phys Mech Astron, 2014; 57: 1495–1503

    Article  Google Scholar 

  20. Wang Y, Chen F, Liu H, et al. Large eddy simulation of unsteady transitional flow on the low-pressure turbine blade. Sci China Tech Sci, 2014; 57: 1761–1768

    Article  Google Scholar 

  21. Qin W, Xie M, Jia M, et al. Large eddy simulation and proper orthogonal decomposition analysis of turbulent flows in a direct injection spark ignition engine: cyclic variation and effect of valve lift. Sci China Tech Sci, 2014; 57: 489–504

    Article  Google Scholar 

  22. Li Z, Huai W, Qian Z. Large eddy simulation of a round jet into a counterflow. Sci China Tech Sci, 2013; 56: 484–491

    Article  Google Scholar 

  23. Wang Z, Xu Y, Lü Y, et al. LES investigation of swirl intensity effect on unconfined turbulent swirling premixed flame. Chin Sci Bull, 2014; 59: 4550–4558

    Article  Google Scholar 

  24. Wang B, Wang Z, Cui G, et al. Study on the dynamic characteristics of flow over building cluster at high Reynolds number by large eddy simulation. Sci China-Phys Mech Astron, 2014; 57: 1144–1159

    Article  MathSciNet  Google Scholar 

  25. Ranga Dinesh K, Kirkpatrick M. Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES. Comput Fluids, 2009; 38: 1232–1242

    Article  MATH  Google Scholar 

  26. Roux S, Lartigue G, Poinsot T, et al. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust Flame, 2005; 141: 40–54

    Article  Google Scholar 

  27. Wang P, Bai X S, Wessman M, et al. Large eddy simulation and experimental studies of a confined turbulent swirling flow. Phys Fluids, 2004; 16: 3306–3324

    Article  Google Scholar 

  28. Wang S, Yang V, Hsiao G, et al. Large-eddy simulations of gas-turbine swirl injector flow dynamics. J Fluid Mech, 2007; 583: 99–122

    Article  MATH  Google Scholar 

  29. Wegner B, Maltsev A, Schneider C, et al. Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int J Heat Fluid Fl, 2004; 25: 528–536

    Article  Google Scholar 

  30. Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech, 1995; 285: 69–94

    Article  MATH  MathSciNet  Google Scholar 

  31. Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech, 1993; 25: 539–575

    Article  MathSciNet  Google Scholar 

  32. Yang Y, Kær S K. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner. Int J Heat Fluid Fl, 2012; 36: 47–57

    Article  Google Scholar 

  33. Oberleithner K, Sieber M, Nayeri C, et al. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction. J Fluid Mech, 2011; 679: 383–414

    Article  MATH  Google Scholar 

  34. Kamal M M, Duwig C, Balusamy S, et al. Proper orthogonal decomposition analysis of non-swirling turbulent stratified and premixed methane/air flames. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 2014

    Google Scholar 

  35. Sweeney M S, Hochgreb S, Dunn M J, et al. The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows. Combust Flame, 2012; 159: 2896–2911

    Article  Google Scholar 

  36. Sweeney M S, Hochgreb S, Dunn M J, et al. The structure of turbulent stratified and premixed methane/air flames II: Swirling flows. Combust Flame, 2012; 159: 2912–2929

    Article  Google Scholar 

  37. Zhou R, Balusamy S, Sweeney M S, et al. Flow field measurements of a series of turbulent premixed and stratified methane/air flames. Combust Flame, 2013; 160: 2017–2028

    Article  Google Scholar 

  38. Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A: Fluid Dyn, 1991; 3: 1760–1765

    Article  MATH  Google Scholar 

  39. Pope S B. Turbulent Flows. Cambridge: Cambridge University Press, 2000

    Book  Google Scholar 

  40. Ranga Dinesh K, Jenkins K, Savill A, et al. Swirl effects on external intermittency in turbulent jets. Int J Heat Fluid Fl, 2012; 33: 193–206

    Article  Google Scholar 

  41. Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys, 1986; 62: 40–65

    Article  MATH  MathSciNet  Google Scholar 

  42. Han C, Zhang P, Ye T, et al. Numerical study of methane/air jet flame in vitiated co-flow using tabulated detailed chemistry. Sci China Tech Sci, 2014; 57: 1750–1760

    Article  Google Scholar 

  43. Sirovich L. Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations. III-Dynamics and scaling. Q Appl Math, 1987; 45: 561–571

    MATH  MathSciNet  Google Scholar 

  44. Sweeney M. Measurements of the structure of turbulent premixed and stratified methane/air flames. Dissertation for the Doctor Degree. Cambridge: University of Cambridge, 2011

    Google Scholar 

  45. Syred N, Beer J. Combustion in swirling flows: A review. Combust Flame, 1974; 23: 143–201

    Article  Google Scholar 

  46. Syred N, O' doherty T, Froud D. The interaction of the precessing vortex core and reverse flow zone in the exhaust of a swirl burner. P I Mech Eng A-J Pow, 1994; 208: 27–36

    Google Scholar 

  47. Froud D, O'doherty T, Syred N. Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust Flame, 1995; 100: 407–412

    Article  Google Scholar 

  48. Syred N, Fick W, O' doherty T, et al. The effect of the precessing vortex core on combustion in a swirl burner. Combust Sci Technol, 1997; 125: 139–157

    Article  Google Scholar 

  49. Schlüter J U. Large eddy simulations of flow and mixing in jets and swirl flows: Application to a gas turbine. Dissertation for the Doctor Degree. Toulouse: Institut national polytechnique de Toulouse, 2000

    Google Scholar 

  50. Schlichting H, Gersten K. Grenzschicht-Theorie. Berlin: Springer, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TaoHong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Han, C., Ye, T. et al. Large eddy simulation of unconfined turbulent swirling flow. Sci. China Technol. Sci. 58, 1731–1744 (2015). https://doi.org/10.1007/s11431-015-5912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5912-2

Keywords

Navigation