Skip to main content
Log in

Study on the dynamic characteristics of flow over building cluster at high Reynolds number by large eddy simulation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters. To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary. The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics. The domain height must be greater than 8h (h is the average building height) in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height. The Reynolds number effects on the dynamic characteristics and flow patterns are investigated. The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster. Roughness height increases monotonously with Reynolds number by 20% from Re*=103 to Re*=105 but displacement height is almost unchanged. Within the canopy layer of heterogeneous building clusters, flow structures vary between buildings and turbulence is more active at high Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnfield A J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol, 2003, 23: 1–26

    Article  Google Scholar 

  2. Britter R E, Hanna S R. Flow and dispersion in urban areas. Annu Rev Fluid Mech, 2003, 35: 469–496

    Article  ADS  Google Scholar 

  3. Allwine K J, Shinn J H, Streit G E, et al. Overview of urban 2000 — A multiscale field study of dispersion through an urban environment. Bull Am Meteorol Soc, 2002, 83: 521–536

    Article  Google Scholar 

  4. Rotach M W L, Vogt R, Bernhofer C, et al. BUBBLE-An urban boundary layer meteorology project. Theor Appl Climatol, 2005, 81: 231–261

    Article  ADS  Google Scholar 

  5. Kastner-Klein P, Fedorovich E, Rotach M W. A wind tunnel study of organised and turbulent air motions in urban street canyons. J Wind Eng Ind Aerodyn, 2001, 89: 849–861

    Article  Google Scholar 

  6. Kim J J, Baik J J. Urban street-canyon flows with bottom heating. Atmospheric Environment, 2001, 35: 3395–3404

    Article  ADS  Google Scholar 

  7. Cheng H, Castro I P. Near wall flow over urban-like roughness. Boundary-Layer Meteorol, 2002, 104: 229–259

    Article  ADS  Google Scholar 

  8. Castro I, Cheng H, Reynolds R. Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Boundary-Layer Meteorol, 2006, 118: 109–131

    Article  ADS  Google Scholar 

  9. Cheng H, Hayden P, Robins A, et al. Flow over cube arrays of different packing densities. J Wind Eng Ind Aerodyn, 2007, 95: 715–740

    Article  Google Scholar 

  10. Hagishima A, Tanimoto J, Nagayama K, et al. Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorol, 2009, 132: 315–337

    Article  ADS  Google Scholar 

  11. Coceal O, Thomas T, Castro I, et al. Mean flow and turbulence satistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol, 2006, 121: 491–519

    Article  ADS  Google Scholar 

  12. Coceal O, Dobre A, Thomas T G, et al. Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech, 2007, 589: 375–409

    Article  ADS  MATH  Google Scholar 

  13. Leonardi S, CASTRO I. Channel flow over large cube roughness: A direct numerical simulation study. J Fluid Mech, 2010, 651: 519–539

    Article  MATH  Google Scholar 

  14. Kanda M, Moriwaki R, Kasamatsu F. Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol, 2004, 112: 343–368

    Article  ADS  Google Scholar 

  15. Xie Z, Castro I. LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbulence Combustion, 2006, 76: 291–312

    Article  MATH  Google Scholar 

  16. Kono T, Tamura T, Ashie Y. Numerical investigations of mean winds within canopies of regularly arrayed cubical buildings under neutral stability conditions. Boundary-Layer Meteorol, 2010, 134: 131–155

    Article  ADS  Google Scholar 

  17. Santiago J, Martilli A, Martín F. CFD simulation of airflow over a regular array of cubes. Part I: Three-dimensional simulation of the flow and validation with wind-tunnel measurements. Boundary-Layer Meteorol, 2007, 122: 609–634

    Article  Google Scholar 

  18. Santiago J, Coceal O, Martilli A, et al. Variation of the sectional drag coefficient of a group of buildings with packing density. Boundary-Layer Meteorol, 2008, 128: 445–457

    Article  ADS  Google Scholar 

  19. Hamlyn D, Britter R. A numerical study of the flow field and exchange processes within a canopy of urban-type roughness. Atmospheric Environment, 2005, 39: 3243–3254

    Article  ADS  Google Scholar 

  20. Shah K B, Ferziger J H. A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle. J Wind Eng Ind Aerodyn, 1997, 67: 211–224

    Article  Google Scholar 

  21. Grötzbach G. Direct numerical and large eddy simulation of turbulent channel flows. Encyclopedia Fluid Mech, 1987, 6: 1337–1391

    Google Scholar 

  22. Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980

    MATH  Google Scholar 

  23. Coceal O, Thomas T, Belcher S. Spatial variability of flow statistics within regular building arrays. Boundary-Layer Meteorol, 2007, 125: 537–552

    Article  ADS  Google Scholar 

  24. Stoesser T, Mathey F, Frohlich J, et al. LES of flow over multiple cubes. Ercoftac Bull, 2003, 56: 15–19

    Google Scholar 

  25. Lettau H. Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol, 1969, 8: 828–832

    Article  Google Scholar 

  26. MacDonald R W, Griffiths R F, Hall D J. An improved method for the estimation of surface roughness of obstacle arrays. Atmospheric Environment, 1998, 32: 1857–1864

    Article  ADS  Google Scholar 

  27. Kim B-G, Lee C, Joo S, et al. Estimation of Roughness Parameters Within Sparse Urban-Like Obstacle Arrays. Boundary-Layer Meteorol, 2011, 139: 457–485

    Article  ADS  Google Scholar 

  28. Kastner-Klein P, Rotach M W. Mean flow and turbulence characteristics in an urban roughness sublayer. Boundary-Layer Meteorol, 2004, 111: 55–84

    Article  ADS  Google Scholar 

  29. Grimmond C S B, Oke T R. Aerodynamic properties of urban areas derived, from analysis of surface form. J Appl Meteorol, 1999, 38: 1262–1292

    Article  Google Scholar 

  30. Jimenez J. Turbulent flows over rough walls. Annu Rev Fluid Mech, 2004, 36: 173–196

    Article  ADS  Google Scholar 

  31. Jackson P S. On the displacement height in the logarithmic velocity profile. J Fluid Mech, 1981, 111: 15–25

    Article  ADS  MATH  Google Scholar 

  32. Roth M. Review of atmospheric turbulence over cities. Q J R Meteorol Soc, 2000, 126: 941–990

    Article  ADS  Google Scholar 

  33. Rotach M W. Simulation of urban-scale dispersion using a Lagrangian stochastic dispersion model. Boundary-Layer Meteorol, 2001, 99: 379–410

    Article  ADS  Google Scholar 

  34. Xie Z T, Coceal O, Castro I P. Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol, 2008, 129: 1–23

    Article  ADS  Google Scholar 

  35. Davidson M J, Mylne K R, Jones C D, et al. Plume dispersion through large groups of obstacles—A field investigation. Atmospheric Environment, 1995, 29: 3245–3256

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiXiang Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, Z., Cui, G. et al. Study on the dynamic characteristics of flow over building cluster at high Reynolds number by large eddy simulation. Sci. China Phys. Mech. Astron. 57, 1144–1159 (2014). https://doi.org/10.1007/s11433-014-5453-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5453-x

Keywords

Navigation