Skip to main content
Log in

Phase-field modeling of epitaxial growth with the Ehrlich-Schwoebel barrier: Model validation and application

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, we introduce different forms of mobility into a quantitative phase-field model to produce arbitrary Ehrlich-Schwoebel (ES) effects. Convergence studies were carried out in the one-side step-flow model, which showed that the original mobility not only induces the ES effect, but also leads to larger numerical instability with increase of the step width. Thus, another modified form of the ES barrier is proposed, and is found to be more suitable for large-scale simulations. Model applications were performed on the wedding-cake structure, coarsening and coalescence of islands and spiral growth. The results show that the ES barrier exhibits more significant kinetic effects at the larger deposition rates by limiting motions of atoms on upper steps, leading to aggregation on the top layers, as well as the roughening of growing surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho A Y, Arthur J R. Molecular beam epitaxy. Prog Solid State Chem, 1975, 10: 157–191

    Article  Google Scholar 

  2. Herman M A, Sitter H. Molecular Beam Epitaxy: Fundamentals and Current Status. Berlin: Springer-Verlag Press, 2012. 29–42

    Google Scholar 

  3. Panish M B. Molecular beam epitaxy. Science, 1980, 208: 916–922

    Article  Google Scholar 

  4. Springholz G, Ueta A Y, Frank N, et al. Spiral growth and threading dislocations for molecular beam epitaxy of PbTe on BaF2 (111) studied by scanning tunneling microscopy. Appl Phys Lett, 1996, 69: 2822–2824

    Article  Google Scholar 

  5. Chen S, Merriman B, Kang M, et al. A level set method for thin film epitaxial growth. Physics, 2001, 167: 475–500

    MATH  Google Scholar 

  6. Amar J G, Family F. Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth. Phys Rev Lett, 1995, 74: 2066–2069

    Article  Google Scholar 

  7. Nurminen L, Kuronen A, Kaski K. Kinetic Monte Carlo simulation of nucleation on patterned substrates. Phys Rev B, 2000, 63: 035407-1–7

    Article  Google Scholar 

  8. Wang L G, Clancy P. Kinetic Monte Carlo simulation of Cu thin film growth. Surf Sci, 2001, 473: 25–38

    Article  Google Scholar 

  9. Voronkov V V. The movement of an elementary step by means of the formation of one-dimensional nuclei. Phys Cryst, 1970, 15: 8–13

    Google Scholar 

  10. Lam C H, Lee C K, Sander L M. Competing roughening mechanisms in strained heteroepitaxy: A fast kinetic Monte Carlo study. Phys Rev Lett, 2002, 89: 216102-1–4

    Article  Google Scholar 

  11. Caflisch R E, Weinan E, Gyure M F, et al. Kinetic model for a step edge in epitaxial growth. Phys Rev E, 1999, 59: 6879–6887

    Article  Google Scholar 

  12. Burton W K, Cabrera N, Frank F C, et al. The growth of crystals and the equilibrium structure of their surfaces. Trans R Soc London Ser A, 1951, 243: 299–358

    Article  MATH  MathSciNet  Google Scholar 

  13. Ratz A, Voigt A. Phase-field model for island dynamics in epitaxial growth. Appl Anal, 2004, 83: 1015–1025

    Article  MathSciNet  Google Scholar 

  14. Otto F, Penzler P, Ratz A, et al. A diffuse-interface approximation for step flow in epitaxial growth. Nonlinearity, 2004, 17: 477–491

    Article  MATH  MathSciNet  Google Scholar 

  15. Ehrlich G, Hudda F G, Chem J. Atomic view of surface selfdiffusion: Tungsten on Tungsten. Physics, 1966, 44: 1039–1049

    Google Scholar 

  16. Schwoebel R L. Step motion on crystal surfaces. II. Appl Phys, 1969, 40: 614–618

    Article  Google Scholar 

  17. Liu F, Metiu H. Stability and kinetics of step motion on crystal surfaces. Phys Rev E, 1994, 49: 2601–2615

    Article  Google Scholar 

  18. Pierre-Louis O. Phase field models for step flow. Phys Rev E, 2003, 68: 021604-1–19

    Article  Google Scholar 

  19. Karma A, Plapp M. Spiral surface growth without desorption. Phys Rev Lett, 1998, 81: 4444–4447

    Article  Google Scholar 

  20. Redinger A, Ricken O, Kuhn P, et al. Spiral growth and Step edge barriers. Phys Rev Lett, 2008, 100: 035506-1–4

    Article  Google Scholar 

  21. Ratsch C, Venables J A, Vac J. Nucleation theory and the early stages of thin film growth. Sci Technol A, 2003, 21: S96–S106

    Google Scholar 

  22. Evans J W, Thiel P A, Bartelt M C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf Sci Rep, 2006, 61: 118–128

    Article  Google Scholar 

  23. Einax M, Dieterich W, Maass P. Colloquium: Cluster growth on surfaces: Densities, size distributions, and morphologies. Rev Mod Phys, 2013, 85: 921–939

    Article  Google Scholar 

  24. Provatas N, Elder K. Phase-Field Methods in Materials Science and Engineering. Weinheim: Wiley Press, 2010

    Book  Google Scholar 

  25. Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E, 1998, 57: 4323–4349

    Article  MATH  Google Scholar 

  26. Yu Y M, Liu B G. Phase-field model of island growth in epitaxy. Phys Rev E, 2004, 69: 021601-1–6

    Google Scholar 

  27. Yu Y M, Liu B G. Self-organized formation of regular nanostripes on vicinal surfaces. Phys Rev B, 2004, 70: 205414-1–7

    Google Scholar 

  28. Yu Y M, Liu B G. Contrasting morphologies of O-rich ZnO epitaxy on Zn- and O-polar thin film surfaces: Phase-field model. Phys Rev B, 2008, 77: 195327-1–6

    Google Scholar 

  29. Yu Y M, Liu B G. Coexistence of meandering and bunching of steps on vicinal surfaces. Phys Rev B, 2006, 73: 035416-1–5

    Google Scholar 

  30. Hu Z, Lowengrubb J S, Wisec S M, et al. Phase-field modeling of epitaxial growth: Applications to step trains and island dynamics. Physica D, 2012, 241: 77–94

    Article  Google Scholar 

  31. Michely T, Krug J. Islands, Mounds and Atoms: Patterns and Processesin Crystal Growth Far from Equilibrium. Berlin: Springer Press, 2004

    Google Scholar 

  32. Pierre-Louis O, Danker G, Chang J, et al. Nonlinear dynamics of vicinal surfaces. Cryst Growth, 2005, 275: 56–64

    Article  Google Scholar 

  33. Misbah C, Pierre-Louis O, Saito Y. Crystal surfaces in and out of equilibrium: A modern view. Rev Mod Phys, 2010, 82: 981–1040

    Article  Google Scholar 

  34. Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification. Phys Rev E, 2004, 70: 061604-1–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangLe Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Xing, H., Sha, S. et al. Phase-field modeling of epitaxial growth with the Ehrlich-Schwoebel barrier: Model validation and application. Sci. China Technol. Sci. 58, 753–762 (2015). https://doi.org/10.1007/s11431-015-5778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5778-3

Keywords

Navigation