Skip to main content
Log in

Fabrication and characteristic detection of graphene nanoelectrodes

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Graphene has the advantages of high electrical conductivity, high heat conductivity, and low noise, which makes it a potential option for integrated circuits interconnection and nanoelectrodes. In this paper, we present a novel fabrication method for graphene nanoeletrodes with nanogap. First, graphene grown by chemical vapor deposition (CVD) is assembled to a chip with microelectrodes. Second, an atomic force microscopy (AFM) based mechanical cutting method is developed to cut the graphene into nanoribbons and nanoeletrodes with nanogap. Then the electronic property of a single nanodot is characterized using the garphene nanoelectrodes, demonstrating the effectiveness of the graphene nanoelectrodes. The fabricated graphene nanoeletrode pairs can be used as probes to detect single molecule in micro-environment, and show an attractive prospect for future molecular electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X, Wang J, Ogorevc B, et al. Glucose nanosensor based on Prussian-blue modified carbon-fiber cone nanoelectrode and an integrated reference electrode. Electroanalysis, 1999, 11: 945–949

    Article  Google Scholar 

  2. Koehne J, Chen H, Li J, et al. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology, 2003, 14: 1239

    Article  Google Scholar 

  3. Bratten C D, Cobbold P H, Cooper J M. Single-cell measurements of purine release using a micromachined electroanalytical sensor. Analytical chemistry, 1998, 70: 1164–1170

    Article  Google Scholar 

  4. Slevin C J, Gray N J, Macpherson J V, et al. Fabrication and characterisation of nanometre-sized platinum electrodes for voltammetric analysis and imaging. Electrochem Commun, 1999, 1: 282–288

    Article  Google Scholar 

  5. Dryfe R A, Kralj B. Voltammetric ion transfer in the presence of a nanoporous material. Electrochem Communs, 1999, 1: 128–130

    Article  Google Scholar 

  6. Wu J, Becerril H A, Bao Z, et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett, 2008, 92: 263302

    Article  Google Scholar 

  7. Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 2009, 4: 43–48

    Article  Google Scholar 

  8. Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5: 574–578

    Article  Google Scholar 

  9. Di C A, Wei D, Yu G, et al. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater, 2008, 20: 3289–3293

    Article  Google Scholar 

  10. Cao Y, Wei Z, Liu S, et al. High-performance Langmuir-Blodgett monolayer transistors with high responsivity. Angew Chem Int Ed, 2010, 122: 6463–6467

    Article  Google Scholar 

  11. Cao Y, Liu S, Shen Q, et al. High-performance photoresponsive organic nanotransistors with single-layer graphenes as two-dimensional electrodes. Adv Funct Mater, 2009, 19: 2743–2748

    Article  Google Scholar 

  12. Tan X, Zhou Z, Cheng M M-C. Electrowetting on dielectric experiments using graphene. Nanotechnology, 2012, 23: 375501

    Article  Google Scholar 

  13. Xu M, Fujita D, Hanagata N. Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small, 2009, 5: 2638–2649

    Article  Google Scholar 

  14. Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene. Nat Nanotechnol, 2008, 4: 25–29

    Article  Google Scholar 

  15. Giesbers A, Zeitler U, Neubeck S, et al. Nanolithography and manipulation of graphene using an atomic force microscope. Solid State Commun, 2008, 147: 366–369

    Article  Google Scholar 

  16. Weng L, Zhang L, Chen Y P, et al. Atomic force microscope local oxidation nanolithography of graphene. Appl Phys Lett, 2008, 93: 093107

    Article  Google Scholar 

  17. Tapaszto L, Dobrik G, Lambin P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nanotechnol, 2008, 3: 397–401

    Article  Google Scholar 

  18. Bell D C, Lemme M C, Stern L A, et al. Precision cutting and patterning of graphene with helium ions. Nanotechnology, 2009, 20: 455301

    Article  Google Scholar 

  19. Lemme M C, Bell D C, Williams J R, et al. Etching of graphene devices with a helium ion beam. ACS Nano, 2009, 3: 2674–2676

    Article  Google Scholar 

  20. Ci L, Xu Z, Wang L, et al. Controlled nanocutting of graphene. Nano Research, 2008, 1: 116–122

    Article  Google Scholar 

  21. Lu G, Zhou X, Li H, et al. Nanolithography of single-layer graphene oxide films by atomic force microscopy. Langmuir, 2010, 26: 6164–6166

    Article  Google Scholar 

  22. He Y, Dong H, Li T, et al. Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. Appl Phys Lett, 2010, 97: 133301

    Article  Google Scholar 

  23. Zhang Y, Gao Y, Liu L, et al. Cutting forces related with lattice orientations of graphene using an atomic force microscopy based nanorobot. Appl Phys Lett, 2012, 101: 213101

    Article  Google Scholar 

  24. Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun, 2012, 3: 699

    Article  Google Scholar 

  25. Wang Z, Jiao N, Tung S, et al. Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces. Chin Sci Bull, 2010, 55: 3466–3471

    Article  Google Scholar 

  26. Bhushan B, Nosonovsky M, Jung Y C. Lotus effect: Roughness-induced superhydrophobic surfaces. In: Nanotribology and Nanomechanics. Berlin, Heidelberg: Springer, 2008. 995–1072

    Chapter  Google Scholar 

  27. Wang Z, Jiao N, Tung S, et al. Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces. Appl Surf Sci, 2011, 257: 3627–3631

    Article  Google Scholar 

  28. Liu Z, Jiao N, Xu K, et al. Nanodot deposition and its application with atomic force microscope. J Nanopart Res, 2013, 15: 1687

    Article  Google Scholar 

  29. Areshkin D A, Gunlycke D, White C T. Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects. Nano Lett, 2007, 7: 204–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to NianDong Jiao or LianQing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Liu, Z., Jiao, N. et al. Fabrication and characteristic detection of graphene nanoelectrodes. Sci. China Technol. Sci. 57, 1950–1955 (2014). https://doi.org/10.1007/s11431-014-5603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5603-4

Keywords

Navigation