Skip to main content
Log in

Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces

  • Article
  • Basic Mechanics
  • Published:
Chinese Science Bulletin

Abstract

The atomic force microscopy (AFM)-based nanomachining of nanochannels on silicon oxide surfaces is investigated both theoretically and experimentally. The relationships of nanochannel depth versus cutting velocity, nanochannel depth versus normal force, friction force versus cutting velocity, and friction force versus normal force are systematically studied. Using the derived theory and fabrication method, a nanochannel with an expected depth can be machined simply by controlling the vertical deflection signal on the position sensitive detector of AFM. The theoretical analysis and fabrication method can be effectively used for AFM-based fabrication of nanochannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pelton R. Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends Anal Chem, 2009, 28: 925–942

    Article  Google Scholar 

  2. Day P J R. Miniaturized PCR systems for cancer diagnosis. Biochem Soc Trans, 2009, 37: 424–426

    Article  Google Scholar 

  3. Assadollahi S, Reininger C, Palkovits R, et al. From lateral flow devices to a novel nano-color microfluidic assay. Sensors, 2009, 9: 6084–6100

    Article  Google Scholar 

  4. Dharmasiri U, Balamurugan S, Adams A A, et al. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis, 2009, 30: 3289–3300

    Article  Google Scholar 

  5. Reichmuth D S, Wang S K, Barrett L M, et al. Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip, 2008, 8: 1319–1324

    Article  Google Scholar 

  6. Brouzes E, Medkova M, Savenelli N, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA, 2009, 106: 14195–14200

    Article  Google Scholar 

  7. Zhao L, Cheng P, Li J X, et al. Analysis of nonadherent apoptotic cells by a quantum dots probe in a microfluidic device for drug screening. Anal Chem, 2009, 81: 7075–7080

    Article  Google Scholar 

  8. Fakhoury J R, Sisson J C, Zhang X J. Microsystems for controlled genetic perturbation of live Drosophila embryos: RNA interference, development robustness and drug screening. Microfluid Nanofluid, 2009, 6: 299–313

    Article  Google Scholar 

  9. Hong J, Edel J B, de Mello A J. Micro- and nanofluidic systems for high-throughput biological screening. Drug Disc Today, 2009, 14: 134–146

    Article  Google Scholar 

  10. Li H F, Lin J M. Applications of microfluidic systems in environmental analysis. Anal Bioanal Chem, 2009, 393: 555–567

    Article  Google Scholar 

  11. Palchetti I, Mascini M. Nucleic acid biosensors for environmental pollution monitoring. Analyst, 2008, 133: 846–854

    Article  Google Scholar 

  12. Miro M, Hansen E H. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-a-vis lab-on-a-chip microfluidic devices. Anal Chim Acta, 2007, 600: 46–57

    Article  Google Scholar 

  13. Perry J L, Kandlikar S G. Review of fabrication of nanochannels for single phase liquid flow. Microfluid Nanofluid, 2006, 2: 185–193

    Article  Google Scholar 

  14. Datta A, Gangopadhyay S, Temkin H, et al. Nanofludic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect. Talanta, 2006, 68: 659–665

    Article  Google Scholar 

  15. Stern M B, Geis M W, Curtin J E. Nanochannel fabrication for chemical sensors. J Vac Sci Technol B, 1997, 15: 2887–2891

    Article  Google Scholar 

  16. Cao H, Yu Z N, Wang J, et al. Fabrication of 10 nm enclosed nanofluidic channels. Appl Phys Lett, 2002, 81: 174–176

    Article  Google Scholar 

  17. Wu H, Li M, Sun M X. Atomic force microscopic view of the fine topography on the tobacco stigma surface during its response to pollination. Chinese Sci Bull, 2008, 53: 1015–1020

    Article  Google Scholar 

  18. He X X, Jin R, Yang L, et al. Study on the specific interaction between angiogenin and aptamer by atomic force microscopy (AFM). Chinese Sci Bull, 2008, 53: 198–203

    Article  Google Scholar 

  19. Cross S E, Jin Y S, Rao J Y, et al. Nanomechanical analysis of cells from cancer patients. Nat Nanotech, 2007, 2: 780–783

    Article  Google Scholar 

  20. Touhami A, Nysten B, Dufrene Y F. Nanoscale mapping of the elasiticty of microbial cells by atomic force microscopy. Langmuir, 2003, 19: 4539–4543

    Article  Google Scholar 

  21. Nowakowski R, Luckham P, Winlove P. Imaging erythrocytes under physiological conditions by atomic force microscopy. BBA-Biomembranes, 2001, 1514: 170–176

    Article  Google Scholar 

  22. Tian X J, Wang Y C, Xi N, et al. Pulse gas alignment and AFM manipulation of single-wall carbon nanotube. Chinese Sci Bull, 2008, 53: 3590–3596

    Article  Google Scholar 

  23. Tian X J, Wang Y C, Yu H B, et al. Di-electrophoresis assembly and fabrication of SWCNT field-effect transistor. Chinese Sci Bull, 2009, 54: 4451–4457

    Article  Google Scholar 

  24. Korayem M H, Zakeri M. Sensitivity analysis of nanoparticles pushing critical conditions in 2-D controlled nanomanipulation based on AFM. Int J Adv Manuf Tech, 2009, 41: 714–726

    Article  Google Scholar 

  25. Mokaberi B, Yun J C, Wang M, et al. Automated nanomanipulation with atomic force microscopes. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, 2007, 1406–1412

  26. Chen H, Xi N, Li G Y. CAD-guided automated nanoassembly using atomic force microscopy-based nonorobotics. IEEE T Autom Sci Eng, 2006, 3: 208–217

    Article  Google Scholar 

  27. Zhang Y J, Li P, Hu Y Z, et al. Manipulation and cutting of carbon nanotubes. Chinese Sci Bull, 2002, 47: 1696–1700

    Google Scholar 

  28. Bhushan B, Nanotribology and Nanomechanics. Berlin: Springer-Verlag, 2008

    Google Scholar 

  29. Bowden F P, Tabor D. The Friction and Lubrication of Solids. Oxford: Oxford University Press, 1950

    Google Scholar 

  30. Li G Y, Xi N, Yu M M, et al. Development of augmented reality system for AFM-based nanomanipulation. IEEE-ASME T Mech, 2004, 9: 358–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiQian Wang.

About this article

Cite this article

Wang, Z., Jiao, N., Tung, S. et al. Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces. Chin. Sci. Bull. 55, 3466–3471 (2010). https://doi.org/10.1007/s11434-010-4077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4077-4

Keywoeds

Navigation