Skip to main content
Log in

Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including K+, Na+, Ca2+, Mg2+, NH +4 , Cl, NO 3 and SO 2−4 ) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg L−1) compared to throughfall. In particular, among the investigated ions, SO 2−4 (12.45 and 6.32 mg L−1) for stemflow and throughfall, respectively, and Cl (9.21 and 4.81 mg L−1) exhibit the highest concentrations in both rainfall redistribution components, while K+ (13.7 and 5.8) and Mg2+ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriaenssens S, Hansen K, Staelens J, Wuyts K, De Schrijver A, Baeten L, Boeckx P, Samson R, Verheyen K. 2012. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Sci Total Environ, 420: 168–182

    Article  CAS  Google Scholar 

  • Arango C, Ponette-González A, Neziri I, Bailey J. 2019. Western spruce budworm effects on throughfall N, P, and C fluxes and soil nutrient status in the Pacific Northwest. Can J For Res, 49: 1207–1218

    Article  CAS  Google Scholar 

  • Aubrey D P. 2020. Relevance of precipitation partitioning to the tree water and nutrient balance. In: van Stan J T, Gutmann E, Friesen J, eds. Precipitation Partitioning by Vegetation. Cham: Springer. 147–162

    Chapter  Google Scholar 

  • Beard K H, Vogt K A, Kulmatiski A. 2002. Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia, 133: 583–593

    Article  Google Scholar 

  • Beck H E, Zimmermann N E, McVicar T R, Vergopolan N, Berg A, Wood E F. 2018. Present and future Kö ppen-Geiger climate classification maps at 1-km resolution. Sci Data, 5: 180214

    Article  Google Scholar 

  • Brinson M M, Bradshaw H D, Holmes R N, Elkins Jr J B. 1980. Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology, 61: 827–835

    Article  CAS  Google Scholar 

  • Cayuela C, Levia D F, Latron J, Llorens P. 2019. Particulate matter fluxes in a Mediterranean mountain forest: Interspecific differences between throughfall and stemflow in oak and pine stands. J Geophys Res-Atmos, 124: 5106–5116

    Article  CAS  Google Scholar 

  • Chiwa M, Kim D H, Sakugawa H. 2003. Rainfall, stemflow, and throughfall chemistry at urban- and mountain-facing sites at Mt. Water Air Soil Pollut, 146: 93–109

    Article  CAS  Google Scholar 

  • Chuyong G B, Newbery D M, Songwe N C. 2004. Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry, 67: 73–91

    Article  CAS  Google Scholar 

  • Dantas de Paula M, Forrest M, Langan L, Bendix J, Homeier J, Velescu A, Wilcke W, Hickler T. 2021. Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytol, 232: 551–566

    Article  Google Scholar 

  • de Oliveira Leite J, Valle R R. 1990. Nutrient cycling in the cacao ecosystem: Rain and throughfall as nutrient sources for the soil and the cacao tree. Agric Ecosyst Environ, 32: 143–154

    Article  Google Scholar 

  • Dezzeo N, Chacón N. 2006. Nutrient fluxes in incident rainfall, throughfall, and stemflow in adjacent primary and secondary forests of the Gran Sabana, southern Venezuela. For Ecol Manage, 234: 218–226

    Article  Google Scholar 

  • Duan X W, Li R, Zhang G L, Hu J M, Fang H Y. 2015. Soil productivity in the Yunnan province: Spatial distribution and sustainable utilization. Soil Tillage Res, 147: 10–19

    Article  Google Scholar 

  • Durocher M G. 1990. Monitoring spatial variability of forest interception. Hydrol Process, 4: 215–229

    Article  Google Scholar 

  • Erisman J W, Draaijers G. 2003. Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalisation. Environ Pollut, 124: 379–388

    Article  CAS  Google Scholar 

  • Franco-Navarro J D, Brumós J, Rosales M A, Cubero-Font P, Talón M, Colmenero-Flores J M. 2016. Chloride regulates leafcell size and water relations in tobacco plants. J Exp Bot, 67: 873–891

    Article  CAS  Google Scholar 

  • Freer-Smith P H, El-Khatib A A, Taylor G. 2004. Capture of particulate pollution by trees: A comparison of species typical of semi-arid areas (Ficus Nitida and Eucalyptus Globulus) with European and North American species. Water Air Soil Pollut, 155: 173–187

    Article  CAS  Google Scholar 

  • Fu B J, Tian H Q, Tao F L, Zhao W W, Wang S. 2020. Progress of the impact of global change on ecosystem services (in Chinese). China Basic Sci, 22: 25–30

    Google Scholar 

  • Garcia-Estringana P, Alonso-Blázquez N, Alegre J. 2010. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J Hydrol, 389: 363–372

    Article  Google Scholar 

  • Guo L, Lin H. 2016. Critical Zone research and observatories: Current status and future perspectives. Vadose Zone J, 15: 1–14

    Article  Google Scholar 

  • Guo L, Mount G J, Hudson S, Lin H, Levia D F. 2020. Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots. Geoderma, 357: 113953

    Article  Google Scholar 

  • He D M, Wu S H, Peng H, Yang Z F, Ou X K, Cui B S. 2005. A study of ecosystem changes in longitudinal range-gorge region and transboundary eco-security in Southwest China (in Chinese). Adv Earth Sci, 20: 338–344

    Google Scholar 

  • Herwitz S R, Levia Jr. D F. 1997. Mid-winter stemflow drainage from Bigtooth Aspen (Populus Grandidentata Michx.) in central Massachusetts. Hydrol Process, 11: 169–175

    Article  Google Scholar 

  • Heshmatol Vaezin S M, Juybari M M, Daei A, Avatefi Hemmat M, Shirvany A, Tallis M J, Hirabayashi S, Moeinaddini M, Hamidian A H, Sadeghi S M M, Pypker T G. 2021. The effectiveness of urban trees in reducing airborne particulate matter by dry deposition in Tehran, Iran. Environ Monit Assess, 193: 842

    Article  CAS  Google Scholar 

  • Hofhansl F, Wanek W, Drage S, Huber W, Weissenhofer A, Richter A. 2011. Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica. Biogeochemistry, 106: 371–396

    Article  Google Scholar 

  • Holder C D. 2004. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. For Ecol Manage, 190: 373–384

    Article  Google Scholar 

  • Huang Z J, Liu Q Q, Hou X L, Wu P F, Jin C, Ma X Q. 2018. Characteristics of rainfall leaching nutrient input in Pinus massoniana forest with different canopy density of Changting (in Chinese). J For Environ, 38: 129–134

    Google Scholar 

  • Jiang B, Xie Z Q, Lam P K S, He P Z, Yue F G, Wang L Q, Huang Y K, Kang H, Yu X W, Wu X D. 2021. Spatial and temporal distribution of sea salt aerosol mass concentrations in the marine boundary layer from the Arctic to the Antarctic. J Geophys Res-Atmos, 126: e2020JD033892

    Article  Google Scholar 

  • Jiang Z Y, Zhi Q Y, van Stan J T, Zhang S Y, Xiao Y H, Chen X Y, Yang X, Zhou H Y, Hu Z M, Wu H W. 2021. Rainfall partitioning and associated chemical alteration in three subtropical urban tree species. J Hydrol, 603: 127109

    Article  CAS  Google Scholar 

  • Johnson M S, Lehmann J. 2006. Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience, 13: 324–333

    Article  Google Scholar 

  • Katsushima T, Kato A, Aiura H, Nanko K, Suzuki S, Takeuchi Y, Murakami S. 2023. Modelling of snow interception on a Japanese cedar canopy based on weighing tree experiment in a warm winter region. Hydrol Process, 37: e14922

    Article  Google Scholar 

  • Koichiro K, Yuri T, Nobuaki T, Isamu K. 2001. Generation of stemflow volume and chemistry in a mature Japanese cypress forest. Hydrol Process, 15: 1967–1978

    Article  Google Scholar 

  • Köppen R. 1936. Kristallisationsvorgänge in Kaliumchloridlösungen. Z Anorg Allg Chem, 228: 169–174

    Article  Google Scholar 

  • Levia D F. 2003. Winter stemflow leaching of nutrient-ions from deciduous canopy trees in relation to meteorological conditions. Agric For Meteorol, 117: 39–51

    Article  Google Scholar 

  • Levia D F, Germer S. 2015. A review ofstemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev Geophys, 53: 673–714

    Article  Google Scholar 

  • Levia D F, Herwitz S R. 2000. Physical properties of water in relation to stemflow leachate dynamics: Implications for nutrient cycling. Can J For Res, 30: 662–666

    Article  CAS  Google Scholar 

  • Levia D F, van Stan J T, Siegert C M, Inamdar S P, Mitchell M J, Mage S M, McHale P J. 2011. Atmospheric deposition and corresponding variability of stemflow chemistry across temporal scales in a mid-Atlantic broadleaved deciduous forest. Atmos Environ, 45: 3046–3054

    Article  CAS  Google Scholar 

  • Levia D F, van Stan J T, Inamdar S P, Jarvis M T, Mitchell M J, Mage S M, Scheick C E, Mchale P J. 2012. Stemflow and dissolved organic carbon cycling: Temporal variability in concentration, flux, and UVVis spectral metrics in a temperate broadleaved deciduous forest in the eastern United States. Can J For Res, 42: 207–216

    Article  CAS  Google Scholar 

  • Levia D F, Michalzik B, Bischoff S, Näthe K, Legates D R, Gruselle M, Richter S. 2013. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions. Geophys Res Lett, 40: 1317–1321

    Article  Google Scholar 

  • Levia D F, Hudson S A, Llorens P, Nanko K. 2017. Throughfall drop size distributions: A review and prospectus for future research. WIREs Water, 4: e1225

    Article  Google Scholar 

  • Li X Y. 2011. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions. Sci China Earth Sci, 12: 1721–1730

    Google Scholar 

  • Li Z K, Li X Y, Zhou S, Yang X F, Fu Y S, Miao C Y, Wang S, Zhang G H, Wu X C, Yang C, Deng Y H. 2022. A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances. Sci China Earth Sci, 65: 2083–2114

    Article  CAS  Google Scholar 

  • Lindberg S E, Lovett G M, Richter D D, Johnson D W. 1986. Atmospheric deposition and canopy interactions of major ions in a forest. Science, 231: 141–145

    Article  CAS  Google Scholar 

  • Liu G H. 2016. Formation and evolution mechanism of ecological security pattern in Southwest China (in Chinese). Acta Ecol Sin, 36: 7088–7091

    Google Scholar 

  • Liu M Z, Sun J X, Jiang G M, Dong M. 2006. Hydraulic redistribution in plant-soil systems (in Chinese). Acta Ecol Sin, 26: 1550–1557

    Google Scholar 

  • Liu S R, Chang J G, Sun P S. 2007. Forest hydrology: Forest and water in a contest of global change (in Chinese). Chin J Plant Ecol, 5: 753–756

    Google Scholar 

  • Liu Y Q, Lv C H, Fu B J, Yu B H. 2021. Terrestrial ecosystem classification and its spatiotemporal changes in China during last 20 years (in Chinese). Acta Ecol Sin, 41: 3975–3987

    Google Scholar 

  • Lu J, Zhang S X, Fang J P, Yan H A, Li J R. 2017. Nutrient fluxes in rainfall, throughfall, and stemflow in Pinus densata natural forest of Tibetan Plateau. CLEAN Soil Air Water, 45: 1600008

    Article  Google Scholar 

  • Małek S. 2001. Quantitative and qualitative changes of precipitation input to the Ojców National Park (South Poland) during 1997–1999. Water Air Soil Pollut, 130: 505–510

    Article  Google Scholar 

  • Mantovani V A, Terra M C N S, de Mello C R, Rodrigues A F, de Oliveira V A, Pinto L O R. 2022. Spatial and temporal patterns in carbon and nitrogen inputs by net precipitation in Atlantic forest, Brazil. For Sci, 68: 113–124

    Google Scholar 

  • Mantovani V A., Terra M C N S, Rodrigues A F, Cordeiro N G, de Mello J M, de Mello C R. 2023. Biotic and abiotic drivers of stemflow carbon enrichment ratio in tropical trees. Trees, 37: 467–483

    Article  CAS  Google Scholar 

  • Marschnert H, Kirkby E A, Engels C. 1997. Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta, 110: 265–273

    Article  Google Scholar 

  • Martinez-Meza E, Whitford W G. 1996. Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs. J Arid Environ, 32: 271–287

    Article  Google Scholar 

  • Moeslund J E, Arge L, Bøcher P K, Dalgaard T, Odgaard M V, Nygaard B, Svenning J C. 2013. Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere, 4: 1–26

    Article  Google Scholar 

  • Mullin K E, Barata I M, Dawson J, Orozco-terWengel P. 2022. First extraction of eDNA from tree hole water to detect tree frogs: A simple field method piloted in Madagascar. Conservation Genet Resour, 14: 99–107

    Article  CAS  Google Scholar 

  • Muoghalu J I, Oakhumen A. 2000. Nutrient content of incident rainfall, throughfall and stemflow in a Nigerian secondary lowland rainforest. Appl Vegetation Sci, 3: 181–188

    Article  Google Scholar 

  • Niu X T, Fan J, Xing T Z. 2023. Stemflow temporal dynamics differ significantly between standing live and dead branches of two xerophytic shrub species. J Hydrol, 625: 130053

    Article  Google Scholar 

  • Oka A, Takahashi J, Endoh Y, Seino T. 2021a. Bark effects on stemflow chemistry in a Japanese temperate forest I. The role of bark surface morphology. Front For Glob Change, 4: 654375

    Article  Google Scholar 

  • Oka A, Takahashi J, Endoh Y, Seino T. 2021b. Bark effects on stemflow chemistry in a Japanese temperate forest II. The role of bark anatomical features. Front For Glob Change, 4: 657850

    Article  Google Scholar 

  • Ouyang S, Xiang W H, Chen L, Zeng Y L, Hu Y T, Lei P F, Fang X, Deng X W. 2021. Regulation mechanisms of forest vegetation restoration on water and soil erosion in mountainous and hilly area of southern China (in Chinese). J Soil Water Conserv, 35: 1–9

    Google Scholar 

  • Oyarzún C E, Godoy R, De Schrijver A, Staelens J, Lust N. 2005. Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry, 71: 107–123

    Article  Google Scholar 

  • Parker G G. 1983. Throughfall and stemflow in the forest nutrient cycle. Adv Eco Res, 13: 57–133

    Article  Google Scholar 

  • Shen H, Cai J N, Li M J, Chen Q, Ye W H, Wang Z F, Lian J Y, Song L. 2017. On Chinese forest canopy biodiversity monitoring (in Chinese). Biodivers Sci, 25: 229–236

    Article  Google Scholar 

  • Sheng H C, Guo N, Ju C Y, Cai T J. 2022. Variation of nutrient fluxes by rainfall redistribution processes in the forest canopy of an urban larch plantation in northeast China. J For Res, 33: 1259–1269

    Article  CAS  Google Scholar 

  • Siegert C M, Levia D F, Leathers D J, van Stan J T, Mitchell M J. 2017. Do storm synoptic patterns affect biogeochemical fluxes from temperate deciduous forest canopies?. Biogeochemistry, 132: 273–292

    Article  CAS  Google Scholar 

  • Su D X, Wang W J, Qiu L, Wang H Y, An J, Zheng G Y, Zu Y G. 2012. Temporal and spatial variations of DOC, DON and their function group characteristics in larch plantations and possible relations with other physical-chemical properties (in Chinese). Acta Ecol Sin, 32: 6705–6714

    Article  CAS  Google Scholar 

  • Su H, Liu W, Li Y G. 2014. Ecological implications of hydraulic redistribution in nutrient cycling of soil-plant system (in Chinese). Chin J Plant Ecol, 38: 1019–1028

    Article  Google Scholar 

  • Su L, Qi L Y, Li X L, Liu Y C, Miao Y. 2023. Changes in throughfall induced by low-severity fire in a coniferous and broadleaved mixed forest. Hydrol Process, 37: e15001

    Article  Google Scholar 

  • Su L, Zhao C, Xu W T, Xie Z Q. 2019. Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forests, 10: 507

    Article  Google Scholar 

  • Talkner U, Krämer I, Hölscher D, Beese F O. 2010. Deposition and canopy exchange processes in central-German beech forests differing in tree species diversity. Plant Soil, 336: 405–420

    Article  CAS  Google Scholar 

  • Tonello K C, Rosa A G, Pereira L C, Matus G N, Guandique M E G, Navarrete A A. 2021. Rainfall partitioning in the Cerrado and its influence on net rainfall nutrient fluxes. Agric For Meteorol, 303: 108372

    Article  Google Scholar 

  • Tucker A, Levia D F, Katul G G, Nanko K, Rossi L F. 2020. A network model for stemflow solute transport. Appl Math Model, 88: 266–282

    Article  Google Scholar 

  • Ulrich B. 1983. Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J, eds. Effects of Accumulation of Air Pollutants in Forest Ecosystems. Dordrecht: Springer

    Chapter  Google Scholar 

  • van Stan J T, Pypker T G. 2015. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ, 536: 813–824

    Article  CAS  Google Scholar 

  • van Stan J T, Levia D F, Inamdar S P, Lepori-Bui M, Mitchell M J. 2012. The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy. Sci Total Environ, 430: 48–58

    Article  CAS  Google Scholar 

  • van Stan J T, Gutmann E, Friesen J. 2020. Precipitation partitioning by vegetation: A global synthesis. Cham: Springer

    Book  Google Scholar 

  • van Stan J T, Ponette-González A G, Swanson T, Weathers K C. 2021. Throughfall and stemflow are major hydrologic highways for particulate traffic through tree canopies. Front Ecol Environ, 19: 404–410

    Article  Google Scholar 

  • Wang G X, Xia J, Li X Y, Yang D, Hu Z Y, Sun S Q, Sun X Y. 2021. Critical advances in understanding ecohydrological processes of terrestrial vegetation: From leaf to watershed scale (in Chinese). Chin Sci Bull, 66: 3667–3683

    Article  Google Scholar 

  • Wang S, Fu B J, Wu X T, Wang Y P. 2020. Dynamics and sustainability of social-ecological systems in the Loess Plateau (in Chinese). Resour Sci, 42: 96–103

    Google Scholar 

  • Wang T, Zhou D W, Shen X J, Fan G H, Zhang H. 2020. Koppen’s climate classification map for China (in Chinese). J Meteorol Sci, 40: 752–760

    Google Scholar 

  • Wang Y H. 2001. The rainfall characters under canopy of several tree species (in Chinese). Sci Silvae Sin, 4: 2–9

    Google Scholar 

  • Wang Y Q, Shao M A, Hu W, Lin H, Huang H. 2016. Spatial variations of soil water content in the Critical zone of the Chinese Loess Plateau (in Chinese). Earth Environ, 44: 391–397

    Google Scholar 

  • Wei X H, Zhou X F. 1989. A study on the stemflow ofthree types of natural secondary forest (in Chinese). Acta Ecol Sin, 4: 325–329

    Google Scholar 

  • Wei X H, Zhou X F. 1993. Study on relation between water cycling and nutrient cycling in oak forest ecosystem (in Chinese). Rural Eco-Environ, 1: 1–5+62

    Google Scholar 

  • Xi C F, Zhang J M, Qiu B J Qiu B J, Liu D L. 1984. Summary of Chinese Natural Geographical Division (in Chinese). Beijing: Science Press

    Google Scholar 

  • Xia J, Zhang Y Y, Mu X M, Zuo Q T, Zhou Y J, Zhao G J. 2020. Progress of ecohydrological discipline and its future development in China (in Chinese). Acta Geogr Sin, 75: 445–457

    Google Scholar 

  • Xu Q C, Wu F Z, Peng Y, Heděnec P, Ni X Y, Tan S, Huang Y B, Yue K. 2023. Effects of forest transformation on the fluxes of potassium, calcium, sodium, and magnesium along with rainfall partitioning. Pol J Environ Stud, 32: 4341–4351

    Article  CAS  Google Scholar 

  • Xu X L, Ma K M, Fu B J, Liu X C, Huang Y, Qi J. 2006. Research review of the relationship between vegetation and soil loss (in Chinese). Acta Ecol Sin, 26: 3137–3143

    Google Scholar 

  • Xu X W, Yu X X, Mo L, Xu Y S, Bao L, Lun X X. 2019. Atmospheric particulate matter accumulation on trees: A comparison of boles, branches and leaves. J Clean Prod, 226: 349–356

    Article  CAS  Google Scholar 

  • Yan X, Zhou M X, Dong X C, Zou S B, Xiao H L, Ma X F. 2015. Molecular mechanisms of foliar water uptake in a desert tree. AoB PlantS, 7, https://doi.org/10.1093/aobpla/plv129

  • Yang D W, Lei H M, Cong Z T. 2010. Overview of the research status in interaction between hydrological processes and vegetation in catchment (in Chinese). J Hydraul Res, 41: 1142–1149

    Google Scholar 

  • Yi H Y, Yan W D, Liang X C, Ouyang S L, Ouyang Z Y, Guo J, He D. 2014. Variation of inorganic anions in precipitation in Cinnamomum cam forests (in Chinese). Acta Ecol Sin, 34: 6528–6537

    Google Scholar 

  • Yin Y, Zhou Y B, Li H, Zhang S Z, Fang Y, Zhang Y J, Zou X. 2022. Linking tree water use efficiency with calcium and precipitation. Tree Physiol, 42: 2419–2431

    Article  CAS  Google Scholar 

  • Yu X X. 2013. A review on forest eco-hydrology research progress and development tendency (in Chinese). J Basic Sci Eng, 21: 391–402

    Google Scholar 

  • Yuan C. 2017. Rainfall redistribution and its influential mechanism of two dorminant shrub species in semi-arid region, China (in Chinese). Dissertation for Doctoral Degree. Beijing: University of Chinese Academy of Sciences

    Google Scholar 

  • Yuan C, Gao G Y, Fu B J. 2016. Stemflow of a xerophytic shrub (Salix psammophila) in northern China: Implication for beneficial branch architecture to produce stemflow. J Hydrol, 539: 577–588

    Article  Google Scholar 

  • Yuan C, Gao G Y, Fu B J. 2017. Comparisons of stemflow and its bio-/abiotic influential factors between two xerophytic shrub species. Hydrol Earth Syst Sci, 21: 1421–1438

    Article  Google Scholar 

  • Yuan C, Gao G Y, Fu B J, He D M, Duan X W, Wei X H. 2019. Temporally dependenteffectsofrainfallcharacteristicsoninter-andintra-eventbranch-scalestemflowvariability in twoxerophyticshrubs. Hydrol Earth Syst Sci, 23: 4077–4095

    Article  Google Scholar 

  • Yuan C, Guo L, Levia D F, Rietkerk M, Fu B J, Gao G Y. 2022. Quantity or efficiency: Strategies of self-organized xerophytic shrubs to harvest rain. Water Resour Res, 58: e2022WR032008

    Article  Google Scholar 

  • Yue K, de Frenne P, Fornara D A, Van Meerbeek K, Li W, Peng X, Ni X Y, Peng Y, Wu F Z, Yang Y S, Peñuelas J. 2021. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob Change Biol, 27: 3350–3357

    Article  Google Scholar 

  • Zhang Y F, Wang X P, Hu R, Pan Y X. 2013. Effects of rainfall redistribution induced by xerophytic vegetation on soil pH (in Chinese). J Desert Res, 33: 1400–1405

    Google Scholar 

  • Zhang Y F, Wang X P, Pan Y X, Hu R. 2016. Variations of nutrients in gross rainfall, stemflow, and throughfall within revegetated desert ecosystems. Water Air Soil Pollut, 227: 183

    Article  Google Scholar 

  • Zhang Y F, Wang X P, Pan Y X, Hu R. 2020. Relative contribution of biotic and abiotic factors to stemflow production and funneling efficiency: A long-term field study on a xerophytic shrub species in Tengger Desert of northern China. Agric For Meteorol, 280: 107781

    Article  Google Scholar 

  • Zhang Y F, Yuan C, Chen N, Levia D F. 2023. Rainfall partitioning by vegetation in China: A quantitative synthesis. J Hydrol, 617: 128946

    Article  Google Scholar 

  • Zhao W Z, Cheng G D. 2001. Review of several problems on the study of eco-hydrological process in arid zones (in Chinese). Chin Sci Bull, 22: 1851–1857

    Google Scholar 

  • Zhou R L, Zhao Y H, Zhao H L, Zhao X Y. 2012. Ecological and physiological analysis of effect of different types of sodium salt treatment on winter wheat resistance to drought (in Chinese). J Desert Res, 32: 784–792

    Google Scholar 

  • Zhu Y G, Li G, Zhang G L, Fu B J. 2015. Soil security: From Earth’s critical zone to ecosystem services (in Chinese). Acta Geogr Sin, 70: 1859–1869

    Google Scholar 

  • Zimmermann A, Germer S, Neill C, Krusche A V, Elsenbeer H. 2008. Spatio-temporal patterns ofthroughfall and solute deposition in an open tropical rain forest. J Hydrol, 360: 87–102

    Article  CAS  Google Scholar 

  • Zittis G, Bruggeman A, Lelieveld J. 2021. Revisiting future extreme precipitation trends in the Mediterranean. Weather Clim Extrem, 34: 100380

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their positive feedback and insightful comments, which greatly improved the quality of this paper. This study was supported by the National Natural Science Foundation of China (Grant No. 41901038), the Start-up Research Fund of Southwest University (Grant No. SWU-KR24003), the Open Foundation of the State Key Laboratory of Urban and Regional Ecology of China (Grant No. SKLURE2022-2-4), the Science Fund for Distinguished Young Scholars of Chongqing (Grant No. cstc2021jcyjjqX0026), and the Special Fund for Youth Team of Southwest University (Grant No. SWU-XDJH202306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Yuan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Yue, X., Zhang, Y. et al. Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern. Sci. China Earth Sci. 67, 1529–1544 (2024). https://doi.org/10.1007/s11430-023-1267-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1267-8

Keywords

Navigation