Skip to main content
Log in

Ionospheric disturbance analysis of the January 15, 2022 Tonga eruption based on GPS data

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Hunga Tonga-Hunga Ha’apai climactic eruption on January 15, 2022, released enormous energy that affected the ionosphere over the Pacific Rim. We analyzed ionospheric disturbance following volcanic eruptions using near-field (<1000km), regional (1000–5000 km), and far-field (5000–12000 km) global positioning system (GPS) observations. The results indicate that the near-field ionospheric perturbation that occurred 8–15 min after the cataclysmic eruption was mainly derived from the shock wave (~1000 m/s) generated by the blast, while the low-frequency branch with long-distance propagation characteristics over the regional and the far-field was mainly associated with atmospheric Lamb waves (~330 m/s). Moreover, the amplitude of disturbance and background total electron content (TEC) are related proportionally. The intensity of the volcanic eruption and the background ionospheric conditions determine the magnitude of ionospheric responses. TEC perturbations were invisible on the reference days. Furthermore, the source location and onset time were calculated using the ray tracing technique, which confirms that the Tonga event triggered the ionospheric anomaly beyond the crater. Finally, the change in the frequency of the perturbations coincided with the arrival of the initial tsunami, implying the generation of a meteotsunami.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afraimovich E L, Astafieva E I, Kirushkin V V. 2006. Localization of the source of ionospheric disturbance generated during an earthquake. Int J Geomagn Aeron, 6: GI2002

    Google Scholar 

  • Artru J, Ducic V, Kanamori H, Lognonné P, Murakami M. 2005. Ionospheric detection of gravity waves induced by tsunamis. Geophys J Int, 160: 840–848

    Google Scholar 

  • Astafyeva E. 2019. Ionospheric detection of natural hazards. Rev Geophys, 57: 1265–1288

    Google Scholar 

  • Brenna M, Cronin S J, Smith I E M, Pontesilli A, Tost M, Barker S, Tonga’onevai S, Kula T, Vaiomounga R. 2022. Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific. Lithos, 412–413: 106614

    Google Scholar 

  • Cahyadi M N, Rahayu R W, Heki K, Nakashima Y. 2020. Harmonic ionospheric oscillation by the 2010 eruption of the Merapi volcano, Indonesia, and the relevance of its amplitude to the mass eruption rate. J Volcanol Geotherm Res, 405: 107047

    Google Scholar 

  • Carvajal M, Sepúlveda I, Gubler A, Garreaud R. 2022. Worldwide signature of the 2022 Tonga volcanic tsunami. Geophys Res Lett, 49: e2022GL098153

    Google Scholar 

  • Dautermann T, Calais E, Mattioli G S. 2009. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. J Geophys Res-Solid Earth, 114: B02202

    Google Scholar 

  • De Angelis S, McNutt S R, Webley P W. 2011. Evidence of atmospheric gravity waves during the 2008 eruption of Okmok volcano from seismic and remote sensing observations. Geophys Res Lett, 38: L10303

    Google Scholar 

  • Ewing M, Press F. 1955. Tide-gage disturbances from the great eruption of Krakatoa. Trans AGU, 36: 53–60

    Google Scholar 

  • Garvin J B, Slayback D A, Ferrini V, Frawley J, Giguere C, Asrar G R, Andersen K. 2018. Monitoring and modeling the rapid evolution of Earth’s newest volcanic island: Hunga Tonga Hunga Ha’apai (Tonga) using high spatial resolution satellite observations. Geophys Res Lett, 45: 3445–3452

    Google Scholar 

  • Han S C, McClusky S, Mikesell T, Tregoning P, Sauber J. 2022. Looking to the sky for better tsunami warnings. Eos, 103, https://doi.org/10.1029/2022EO220519

  • Hao Y Q, Li Q H, Zhang D H, Xiao Z, Yang G L, Huang C. 2018. Using GNSS TEC technique to observe compression of the plasmasphere by an interplanetary shock (in Chinese). Sci Sin Tech, 48: 853–862

    Google Scholar 

  • Harkrider D, Press F. 1967. The Krakatoa air-sea waves: An example of pulse propagation in coupled systems. Geophys J Int, 13: 149–159

    Google Scholar 

  • Heki K. 2006. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances. Geophys Res Lett, 33: L14303

    Google Scholar 

  • Heki K. 2022. Ionospheric signatures of repeated passages of atmospheric waves by the 2022 Jan. 15 Hunga Tonga-Hunga Ha’apai eruption detected by QZSS-TEC observations in Japan. Earth Planets Space, 74: 112

    Google Scholar 

  • Hite E B, Garvin J B, Slayback D A, Burke E A, Callahan G, Joyce P, Whittaker K. 2020. Exploring the human-nature dynamics of Hunga Tonga Hunga Ha’apai, Earth’s newest landmass. J Volcanol Geotherm Res, 401: 106902

    Google Scholar 

  • Huang C Y, Helmboldt J F, Park J, Pedersen T R, Willemann R. 2019. Ionospheric detection of explosive events. Rev Geophys, 57: 78–105

    Google Scholar 

  • Jin S G, Occhipinti G, Jin R. 2015. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Sci Rev, 147: 54–64

    Google Scholar 

  • Kanamori H, Mori J, Harkrider D G. 1994. Excitation of atmospheric oscillations by volcanic eruptions. J Geophys Res-Solid Earth, 99: 21947–21961

    Google Scholar 

  • Kong J, Yao Y B, Xu Y H, Kuo C Y, Zhang L, Liu L, Zhai C Z. 2017. A clear link connecting the troposphere and ionosphere: Ionospheric reponses to the 2015 Typhoon Dujuan. J Geod, 91: 1087–1097

    Google Scholar 

  • Kubota T, Saito T, Nishida K. 2022. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science, 377: 91–94

    Google Scholar 

  • Li J, Chen K, Chai H, Wei G. 2022. Rapid tsunami potential assessment using GNSS ionospheric disturbance: Implications from three mega-thrusts. Remote Sens, 14: 2018

    Google Scholar 

  • Li Z, Tang L, Zhang X H. 2016. Ionospheric disturbances triggered by 2015 Nepal earthquake detected by GPS TEC (in Chinese). J Geod Geodyn, 36: 757–760, 765

    Google Scholar 

  • Lin J T, Rajesh P K, Lin C C H, Chou M Y, Liu J Y, Yue J, Hsiao T Y, Tsai H F, Chao H M, Kung M M. 2022. Rapid conjugate appearance of the giant ionospheric Lamb wave signatures in the Northern Hemisphere after Hunga-Tonga volcano eruptions. Geophys Res Lett, 49: e98222

    Google Scholar 

  • Liu J Y, Lin C Y, Tsai Y L, Liu T C, Hattori K, Sun Y Y, Wu T R. 2019. Ionospheric GNSS total electron content for tsunami warning. J Earthq Tsunami, 13: 1941007

    Google Scholar 

  • Liu J Y, Tsai H F, Lin C H, Kamogawa M, Chen Y I, Lin C H, Huang B S, Yu S B, Yeh Y H. 2010. Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake. J Geophys Res-Space, 115: A08303

    Google Scholar 

  • Manta F, Occhipinti G, Feng L, Hill E M. 2020. Rapid identification of tsunamigenic earthquakes using GNSS ionospheric sounding. Sci Rep, 10: 11054

    Google Scholar 

  • Matoza R S, Fee D, Assink J D, Iezzi A M, Green D N, Kim K, Toney L, Lecocq T, Krishnamoorthy S, Lalande J M, Nishida K, Gee K L, Haney M M, Ortiz H D, Brissaud Q, Martire L, Rolland L, Vergados P, Nippress A, Park J, Shani-Kadmiel S, Witsil A, Arrowsmith S, Caudron C, Watada S, Perttu A B, Taisne B, Mialle P, Le Pichon A, Vergoz J, Hupe P, Blom P S, Waxler R, De Angelis S, Snively J B, Ringler A T, Anthony R E, Jolly A D, Kilgour G, Averbuch G, Ripepe M, Ichihara M, Arciniega-Ceballos A, Astafyeva E, Ceranna L, Cevuard S, Che I Y, De Negri R, Ebeling C W, Evers L G, Franco-Marin L E, Gabrielson T B, Hafner K, Harrison R G, Komjathy A, Lacanna G, Lyons J, Macpherson K A, Marchetti E, McKee K F, Mellors R J, Mendo-Pérez G, Mikesell T D, Munaibari E, Oyola-Merced M, Park I, Pilger C, Ramos C, Ruiz M C, Sabatini R, Schwaiger H F, Tailpied D, Talmadge C, Vidot J, Webster J, Wilson D C. 2022. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science, 377: 95–100

    Google Scholar 

  • Monserrat S, Vilibic I, Rabinovich A B. 2006. Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Nat Hazards Earth Syst Sci, 6: 1035–1051

    Google Scholar 

  • Nishida K, Kobayashi N, Fukao Y. 2014. Background Lamb waves in the Earth’s atmosphere. Geophys J Int, 196: 312–316

    Google Scholar 

  • Omira R, Ramalho R S, Kim J, Gonzalez P J, Kadri U, Miranda J M, Carrilho F, Baptista M A. 2022. Global Tonga tsunami explained by a fast-moving atmospheric source. Nature, 609: 734–740

    Google Scholar 

  • Otsuka Y, Aramaki T, Ogawa T, Saito A. 2006. A statistical study of ionospheric irregularities observed with a GPS network in Japan. Recurrent Magnetic Storms: Corotating Solar Wind Streams, 167: 271–281

    Google Scholar 

  • Peng Y X, Scales W A, Hartinger M D, Xu Z, Coyle S. 2021. Characterization of multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. Satell Navig, 2: 14

    Google Scholar 

  • Perevalova N P, Sankov V A, Astafyeva E I, Zhupityaeva A S. 2014. Threshold magnitude for Ionospheric TEC response to earthquakes. J Atmos Sol-Terr Phys, 108: 77–90

    Google Scholar 

  • Rakoto V, Lognonné P, Rolland L. 2017. Tsunami modeling with solid Earth-ocean-atmosphere coupled normal modes. Geophys J Int, 211: 1119–1138

    Google Scholar 

  • Richmond A D. 1978. Gravity wave generation, propagation, and dissipation in the thermosphere. J Geophys Res-Space Phys, 83: 4131–4145

    Google Scholar 

  • Saito T, Kubota T, Chikasada N Y, Tanaka Y, Sandanbata O. 2021. Meteorological tsunami generation due to sea-surface pressure change: Three-dimensional theory and synthetics of ocean-bottom pressure change. J Geophys Res-Oceans, 126: e2020JC017011

    Google Scholar 

  • Shults K, Astafyeva E, Adourian S. 2016. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J Geophys Res-Space Phys, 121: 10303–10315

    Google Scholar 

  • Tang L, Li F W, Huang Z Y, Li G J. 2018. The effects ofsingle-layer model on GNSS detection of tsunami-induced ionospheric disturbances (in Chinese). Chin J Geophys, 61: 3577–3583

    Google Scholar 

  • Themens D R, Watson C, Žagar N, Vasylkevych S, Elvidge S, McCaffrey A, Prikryl P, Reid B, Wood A, Jayachandran P T. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys Res Lett, 49: e2022GL098158

    Google Scholar 

  • Tsai H F, Liu J Y, Lin C H, Chen C H. 2011. Tracking the epicenter and the tsunami origin with GPS ionosphere observation. Earth Planet Sp, 63: 859–862

    Google Scholar 

  • Wessel P, Smith W H F, Scharroo R, Luis J, Wobbe F. 2013. Generic mapping tools: Improved version released. Eos Trans AGU, 94: 409–410

    Google Scholar 

  • Wright C J, Hindley N, Alexander M J, Barlow M, Hoffmann L, Mitchell C, Prata F, Bouillon M, Carstens J, Clerbaux C, Osprey S, Powell N, Randall C, Yue J. 2022. Tonga eruption triggered waves propagating globally from surface to edge of space. ESS Open Archive

  • Yuen D A, Scruggs M A, Spera F J, Zheng Y, Hu H, McNutt S R, Thompson G, Mandli K, Keller B R, Wei S S, Peng Z, Zhou Z, Mu-largia F, Tanioka Y. 2022. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthq Res Adv, 2: 100134

    Google Scholar 

  • Zettergren M D, Snively J B. 2015. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J Geophys Res-Space, 120: 8002–8024

    Google Scholar 

  • Zhang D H, Xiao Z. 2000. A method of calculating TEC with GPS data and its application to the ionospheric disturbances (in Chinese). Chin J Geophys, 4: 451–458

    Google Scholar 

  • Zhang S R, Vierinen J, Aa E, Goncharenko L P, Erickson P J, Rideout W, Coster A J, Spicher A. 2022. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front Astron Space Sci, 9: 871275

    Google Scholar 

Download references

Acknowledgements

We thank the responsible editor and two anonymous reviewers for their constructive comments. The raw GNSS data were archived by International GNSS Service (IGS, ftp://data-out.unavco.org/pub/), UNAVCO (ftp://data-out.unavco.org/pub/), GEONET Japan (https://terras.gsi.go.jp/), GeoNet New Zealand (https://www.geonet.org.nz), and Geoscience Australia (https://data.gnss.ga.gov.au/). We gratefully acknowledge the above institutions and communities for providing public access to GNSS data. Additionally, DART data were obtained from the New Zealand National Geohazards Centre (https://www.geonet.org.nz/tsunami/dart), and Wessel et al. provided the support of GMT mapping software. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42074024, 41890813 & 41976066) and the Young Talent Promotion Project of the China Association for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, K., Chai, H. et al. Ionospheric disturbance analysis of the January 15, 2022 Tonga eruption based on GPS data. Sci. China Earth Sci. 66, 1798–1813 (2023). https://doi.org/10.1007/s11430-022-1087-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1087-2

Keywords

Navigation