Skip to main content
Log in

Paleomagnetic constraints on Paleogene-Neogene rotation and paleo-stress in the northern Qaidam Basin

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Knowing the rotation and paleo-stress history in Qaidam Basin is a fundamental parameter to quantify the mechanism of intracontinental deformation in Tibetan Plateau. However, few studies have been conducted on tectonic rotation and stress evolution over long timescales in the Qaidam Basin. Here, we report new magnetic declination and the anisotropy of magnetic susceptibility (AMS) from a ∼52–7 Ma sequence of fluvial and lacustrine sediments in the Dahonggou (DHG) section in the northern Qaidam Basin. The magnetic declination revealed that the northern Qaidam Basin underwent a clockwise rotation 25.1° ±8.6° during ∼33–17 Ma, followed by a counterclockwise rotation 16.9°±6.8° during ∼17–13.5 Ma. The AMS results showed that the “earliest deformation” fabrics were interrupted by the “pencil structure” fabrics in the intervals of ∼52–45 and ∼21–15 Ma. The interruption, synchronous with the marked deceleration of the India-Asia convergence rate, indicates pulse of strong tectonic compressive stress. In addition, the AMS results documented a transition in stress direction from S-N to SW-NE at ∼15 Ma, suggesting a kinematic shift in the northeastern TP. Our constraints on the rotation and stress from the northern Qaidam Basin support the two-stage evolution of the Altyn Tagh Fault (ATF). The fast-rate slip motion on the ATF during the early Oligocene caused the clockwise rotation in the northern Qaidam Basin; the second stage with enhanced thrusting since the middle Miocene caused extensive crustal shortening and dispersive NW-trending folds and faults in the Qaidam Basin and the northeastern TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besse J, Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J Geophys Res, 107: 2300

    Google Scholar 

  • Borradaile G J, Henry B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Sci Rev, 42: 49–93

    Article  Google Scholar 

  • Cande S C, Stegman D R. 2011. Indian and African Plate motions driven by the push force of the Réunion plume head. Nature, 475: 47–52

    Article  Google Scholar 

  • Cao K, Wang G C, Bernet M, van der Beek P, Zhang K X. 2015. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen. Earth Planet Sci Lett, 432: 391–403

    Article  Google Scholar 

  • Cao K, Leloup P H, Wang G, Liu W, Mahéo G, Shen T, Xu Y, Sorrel P, Zhang K. 2021. Thrusting, exhumation, and basin fill on the western margin of the South China block during the India-Asia collision. GSA Bull, 133: 74–90

    Article  Google Scholar 

  • Chang H, Li L, Qiang X, Garzione C N, Pullen A, An Z. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth Planet Sci Lett, 430: 271–283

    Article  Google Scholar 

  • Chen X H, Dang Y Q, Yin A, Wang L Q. 2010. Basin-Mountain Coupling and Tectonic Evolution of Qaidam Basin and Its Adjacent Orogenic Belts (in Chinese with English abstract). Beijing: Geological Publishing House. 239–253

    Google Scholar 

  • Chen Y, Gilder S, Halim N, Cogné J P, Courtillot V. 2002. New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics, 21: 1042

    Article  Google Scholar 

  • Cheng F, Guo Z, Jenkins H S, Fu S, Cheng X. 2015. Initial rupture and displacement on the Altyn Tagh fault, northern Tibetan Plateau: Constraints based on residual Mesozoic to Cenozoic strata in the western Qaidam Basin. Geosphere, 11: 921–942

    Article  Google Scholar 

  • Cheng F, Jolivet M, Guo Z, Wang L, Zhang C, Li X. 2021. Cenozoic evolution of the Qaidam Basin and implications for the growth of the northern Tibetan Plateau: A review. Earth-Sci Rev, 220: 103730

    Article  Google Scholar 

  • Cheng X G, Lin X B, Wu L, Chen H L, Xiao A C, Gong J F, Zhang F Q, Yang S F. 2016. The exhumation history of North Qaidam Thrust Belt constrained by apatite fission track thermochronology: Implication for the evolution of the Tibetan Plateau. Acta Geologica Sin-Engl Ed, 90: 870–883

    Article  Google Scholar 

  • Clark M K, Farley K A, Zheng D, Wang Z, Duvall A R. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth Planet Sci Lett, 296: 78–88

    Article  Google Scholar 

  • Clift P D, Hodges K V, Heslop D, Hannigan R, van Long H, Calves G. 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci, 1: 875–880

    Article  Google Scholar 

  • Copley A, Avouac J P, Royer J Y. 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J Geophys Res-Solid Earth, 115: B03410

    Article  Google Scholar 

  • Craddock W, Kirby E, Zhang H. 2011. Late Miocene-Pliocene range growth in the interior of the northeastern Tibetan Plateau. Lithosphere, 3: 420–438

    Article  Google Scholar 

  • Dai S, Fang X, Dupont-Nivet G, Song C, Gao J, Krijgsman W, Langereis C, Zhang W. 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J Geophys Res-Solid Earth, 111: B11102

    Article  Google Scholar 

  • Dunlop D J, Özdemir Ö. 1997. Rock Magnetism: Fundamentals and Frontiers. London: Cambridge University Press. 16–42

    Google Scholar 

  • Dupont-Nivet G, Butler R F, Yin A, Chen X. 2002. Paleomagnetism indicates no Neogene rotation of the Qaidam Basin in northern Tibet during Indo-Asian collision. Geology, 30: 263–266

    Article  Google Scholar 

  • Dupont-Nivet G, Butler R F, Yin A, Chen X. 2003. Paleomagnetism indicates no Neogene vertical axis rotations of the northeastern Tibetan Plateau. J Geophys Res, 108: 2386

    Article  Google Scholar 

  • Dupont-Nivet G, Horton B K, Butler R F, Wang J, Zhou J, Waanders G L. 2004. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau. J Geophys Res-Solid Earth, 109: B04401

    Article  Google Scholar 

  • Dupont-Nivet G, Dai S, Fang X M, Krijgsman W, Erens V, Reitsma M, Langereis C. 2008. Timing and distribution of tectonic rotations in the northeastern Tibetan Plateau. Geol Soc Am Spec Paper, 444: 73–87

    Google Scholar 

  • Duvall A R, Clark M K, van der Pluijm B A, Li C Y. 2011. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet Sci Lett, 304: 520–526

    Article  Google Scholar 

  • Duvall A R, Clark M K, Kirby E, Farley K A, Craddock W H, Li C, Yuan D Y. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics, 32: 1190–1211

    Article  Google Scholar 

  • England P, Houseman G. 1989. Extension during continental convergence, with application to the Tibetan Plateau. J Geophys Res, 94: 17561–17579

    Article  Google Scholar 

  • England P, Molnar P. 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344: 140–142

    Article  Google Scholar 

  • Evans M E, Heller F. 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. New York: Academic Press. 7–18

    Google Scholar 

  • Fan L G, Meng Q R, Wu G L, Wei H H, Du Z M, Wang E. 2019. Paleogene crustal extension in the eastern segment of the NE Tibetan Plateau. Earth Planet Sci Lett, 514: 62–74

    Article  Google Scholar 

  • Fang X M, Fang Y H, Zan J B, Zhang W L, Song C H, Appel E, Meng Q Q, Miao Y F, Dai S, Lu Y, Zhang T. 2019a. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth-Sci Rev, 190: 460–485

    Article  Google Scholar 

  • Fang X M, Galy A, Yang Y B, Zhang W L, Ye C C, Song C H. 2019b. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47: 992–996

    Article  Google Scholar 

  • Fang X M, Yan M D, Van der Voo R, Rea D K, Song C H, Parés J M, Gao J P, Nie J S, Dai S. 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. GSA Bull, 117: 1208–1225

    Article  Google Scholar 

  • Feng Z T, Zhang W L, Fang X M, Zan J B, Zhang T, Song C H, Yan M D. 2022. Eocene deformation of the NE Tibetan Plateau: Indications from magnetostratigraphic constraints on the oldest sedimentary sequence in the Linxia Basin. Gondwana Res, 101: 77–93

    Article  Google Scholar 

  • Garzione C N, Ikari M J, Basu A R. 2005. Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in northeastern Tibet from Nd isotopes: Implications for tectonic forcing of climate. GSA Bull, 117: 1156–1166

    Article  Google Scholar 

  • Gilder S, Chen Y, Sen S. 2001. Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia. J Geophys Res-Solid Earth, 106: 30505–30521

    Article  Google Scholar 

  • Harrison T M, Copeland P, Kidd W S F, Yin A. 1992. Raising Tibet. Science, 255: 1663–1670

    Article  Google Scholar 

  • He C C, Zhang Y Q, Li S K, Wang K, Ji J Q. 2021. Magnetostratigraphic study of a Late Cretaceous-Paleogene succession in the eastern Xining basin, NE Tibet: Constraint on the timing of major tectonic events in response to the India-Eurasia collision. GSA Bull, 133: 2457–2484

    Article  Google Scholar 

  • Hrouda F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surveys, 5: 37–82

    Article  Google Scholar 

  • Hu X, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43: 859–862

    Article  Google Scholar 

  • Hu X M, Wang J G, An W, Garzanti E, Li J. 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci China Earth Sci, 60: 603–625

    Article  Google Scholar 

  • Huo F F, Shao R Q, Jiang N, Zhang R Y, Cheng X, Zhang W J, Wei B T, Zhou Y N, Wu H N. 2020. Anisotropy of magnetic susceptibility of Mesozoic and Cenozoic sediments in the northern margin of Qaidam Basin and its sedimentary-tectonic significance (in Chinese with English abstract). Chin J Geophys, 63: 583–596

    Google Scholar 

  • Jelinek V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79: T63–T67

    Article  Google Scholar 

  • Ji J L, Zhang K X, Clift P D, Zhuang G S, Song B W, Ke X, Xu Y D. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Res, 46: 141–155

    Article  Google Scholar 

  • Jian X, Guan P, Zhang W, Liang H, Feng F, Fu L. 2018. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam Basin. Gondwana Res, 60: 94–104

    Article  Google Scholar 

  • Jin C S, Liu Q S, Liang W T, Roberts A P, Sun J M, Hu P X, Zhao X Y, Su Y L, Jiang Z X, Liu Z F, Duan Z Q, Yang H H, Yuan S H. 2018. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India-Eurasia collision and Tibetan Plateau deformation. Earth Planet Sci Lett, 486: 41–53

    Article  Google Scholar 

  • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: Fission-track constraints. Tectonophysics, 343: 111–134

    Article  Google Scholar 

  • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Roger F, Leyreloup A, Arnaud N, Wu C. 2003. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault. Tectonics, 22: 1052

    Article  Google Scholar 

  • Kapp P, DeCelles P G, Leier A L, Fabijanic J M, He S, Pullen A, Gehrels G E, Ding L. 2007. The Gangdese retroarc thrust belt revealed. Gsa Today, 17: 4

    Article  Google Scholar 

  • Ke X, Ji J L, Zhang K X, Kou X H, Song B W, Wang C W. 2013. Magnetostratigraphy and anisotropy of magnetic susceptibility of the Lulehe Formation in the northeastern Qaidam Basin. Acta Geol Sin-Engl Ed, 87: 576–587

    Article  Google Scholar 

  • Larrasoaña J C, Gómez-Paccard M, Giralt S, Roberts A P. 2011. Rapid locking of tectonic magnetic fabrics in weakly deformed mudrocks. Tectonophysics, 507: 16–25

    Article  Google Scholar 

  • Lease R O, Burbank D W, Clark M K, Farley K A, Zheng D, Zhang H. 2011. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology, 39: 359–362

    Article  Google Scholar 

  • Lease R O, Burbank D W, Hough B, Wang Z, Yuan D. 2012. Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance. GSA Bull, 124: 657–677

    Article  Google Scholar 

  • Leblanc D, Gleizes G, Lespinasse P, Olivier P, Bouchez J L. 1994. The maladeta granite polydiapir, Spanish Pyrenees: A detailed magnetostructural study. J Struct Geol, 16: 223–235

    Article  Google Scholar 

  • Leeder M R. 2011. Tectonic sedimentology: Sediment systems deciphering global to local tectonics. Sedimentology, 58: 2–56

    Article  Google Scholar 

  • Li B, Chen X H, Zuza A V, Hu D G, Ding W C, Huang P H, Xu S L. 2019. Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: Constraints from apatite- and zircon-fission track thermochronology. Tectonophysics, 751: 109–124

    Article  Google Scholar 

  • Li B S, Yan M D, Zhang W L, Fang X M. 2021b. Bidirectional growth of the Altyn Tagh Fault since the Early Oligocene. Tectonophysics, 815: 228991

    Article  Google Scholar 

  • Li B S, Yan M D, Zhang W L, Fang X M, Meng Q Q, Zan J B, Chen Y, Zhang D W, Yang Y P, Guan C. 2017. New paleomagnetic constraints on middle Miocene strike-slip faulting along the middle Altyn Tagh Fault. J Geophys Res-Solid Earth, 122: 4106–4122

    Article  Google Scholar 

  • Li B S, Yan M D, Zhang W L, Fang X M, Yang Y P, Zhang D W, Chen Y, Guan C. 2018. Paleomagnetic rotation constraints on the deformation of the Northern Qaidam marginal thrust belt and implications for strike-slip faulting along the Altyn Tagh fault. J Geophys Res-Solid Earth, 123: 7207–7224

    Article  Google Scholar 

  • Li B S, Yan M D, Zhang W L, Fang X M, Yang Y P, Zhang D W, Guan C, Bao J. 2021a. Two-stage strike-slip faulting of the Altyn Tagh Fault revealed by magnetic fabrics in the Qaidam Basin. Tectonophysics, 821: 229142

    Article  Google Scholar 

  • Li B S, Yan M D, Zhang W L, Parés J M, Fang X M, Yang Y P, Zhang D W, Guan C, Bao J. 2020. Magnetic fabric constraints on the Cenozoic compressional strain changes in the Northern Qaidam marginal thrust belt and their tectonic implications. Tectonics, 39: e05989

    Article  Google Scholar 

  • Li B S, Yan M D, Zhang W L, Yang Y P, Zhang D W, Chen Y, Guan C. 2019. The mechanisms of arcuate structures on the south side of the Altyn Tagh Fault and their tectonic implications (in Chinese with English abstract). Seismol Geol, 41: 300–319

    Google Scholar 

  • Li S H, van Hinsbergen D J J, Shen Z S, Najman Y, Deng C L, Zhu R X. 2020a. Anisotropy of magnetic susceptibility (AMS) analysis of the Gonjo Basin as an independent constraint to date Tibetan shortening pulses. Geophys Res Lett, 47: e87531

    Google Scholar 

  • Li S H, van Hinsbergen D J J, Najman Y, Liu-Zeng J, Deng C L, Zhu R X. 2020b. Does pulsed Tibetan deformation correlate with Indian plate motion changes? Earth Planet Sci Lett, 536: 116144

    Article  Google Scholar 

  • Li Y L, Wang C S, Zhao X X, Yin A, Ma C. 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Res, 22: 482–492

    Article  Google Scholar 

  • Lin X B, Chen H L, Wyrwoll K H, Batt G E, Liao L, Xiao J. 2011. The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: Integrated constraint from stratigraphy and thermochronology. J Geol, 119: 372–393

    Article  Google Scholar 

  • Liu Q S, Roberts A P, Larrasoaña J C, Banerjee S K, Guyodo Y, Tauxe L, Oldfield F. 2012. Environmental magnetism: Principles and applications. Rev Geophys, 50: RG4002

    Article  Google Scholar 

  • Liu R C, Allen M B, Zhang Q Q, Du W, Cheng X, Holdsworth R E, Guo Z J. 2017. Basement controls on deformation during oblique convergence: Transpressive structures in the western Qaidam Basin, northern Tibetan Plateau. Lithosphere, 9: 583–594

    Google Scholar 

  • Lu H J, Fu B H, Shi P L, Ma Y X, Li H B. 2016. Constraints on the uplift mechanism of northern Tibet. Earth Planet Sci Lett, 453: 108–118

    Article  Google Scholar 

  • Lu H J, Tian X B, Yun K, Li H B. 2018. Convective removal of the Tibetan Plateau mantle lithosphere by ∼26 Ma. Tectonophysics, 731–732: 17–34

    Article  Google Scholar 

  • Lu H, Wang E, Meng K. 2014. Paleomagnetism and anisotropy of magnetic susceptibility of the Tertiary Janggalsay section (southeast Tarim basin): Implications for Miocene tectonic evolution of the Altyn Tagh Range. Tectonophysics, 618: 67–78

    Article  Google Scholar 

  • Lu H J, Wang E, Shi X H, Meng K. 2012. Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses. Tectonophysics, 580: 150–161

    Article  Google Scholar 

  • Mao L G, Xiao A C, Zhang H W, Wu Z K, Wang L Q, Shen Y, Wu L. 2016. Structural deformation pattern within the NW Qaidam Basin in the Cenozoic era and its tectonic implications. Tectonophysics, 687: 78–93

    Article  Google Scholar 

  • Meng J, Coe R S, Wang C S, Gilder S A, Zhao X X, Liu H, Li Y L, Ma P F, Shi K, Li S. 2017. Reduced convergence within the Tibetan Plateau by 26 Ma? Geophys Res Lett, 44: 6624–6632

    Article  Google Scholar 

  • Meng J, Gilder S A, Li Y L, Wang C S, Liu T. 2020. Expanse of Greater India in the late Cretaceous. Earth Planet Sci Lett, 542: 116330

    Article  Google Scholar 

  • Meng J, Gilder S A, Wang C S, Coe R S, Tan X D, Zhao X X, He K. 2019. Defining the limits of Greater India. Geophys Res Lett, 46: 4182–4191

    Article  Google Scholar 

  • Meng J, Wang C S, Zhao X X, Coe R, Li Y L, Finn D. 2012. India-Asia collision was at 24°N and 50 Ma: Palaeomagnetic proof from southernmost Asia. Sci Rep, 2: 925

    Article  Google Scholar 

  • Meyer B, Tapponnier P, Bourjot L, Métivier F, Gaudemer Y, Peltzer G, Shunmin G, Zhitai C. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau. Geophys J Int, 135: 1–47

    Article  Google Scholar 

  • Molnar P. 2004. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Annu Rev Earth Planet Sci, 32: 67–89

    Article  Google Scholar 

  • Molnar P, Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001

    Article  Google Scholar 

  • Molnar P, Tapponnier P. 1975. Cenozoic Tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189: 419–426

    Article  Google Scholar 

  • Nie J S, Ren X P, Saylor J E, Su Q D, Horton B K, Bush M A, Chen W H, Pfaff K. 2020. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. GSA Bull, 132: 310–320

    Article  Google Scholar 

  • Novak B, Housen B, Kitamura Y, Kanamatsu T, Kawamura K. 2014. Magnetic fabric analyses as a method for determining sediment transport and deposition in deep sea sediments. Mar Geol, 356: 19–30

    Article  Google Scholar 

  • Ogg J G. 2012. Geomagnetic polarity time scale. In: Gradstein F M, Ogg J G, Schmitz M, Ogg G, eds. The Geological Time Scale 2012. Amsterdam: Elsevier. 5–113

    Google Scholar 

  • Parés J M. 2004. How deformed are weakly deformed mudrocks? Insights from magnetic anisotropy. Geol Soc Lond Spec Publ, 238: 191–203

    Article  Google Scholar 

  • Parés J M. 2015. Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rocks. Front Earth Sci, 3: 4

    Google Scholar 

  • Parés J M, van der Pluijm B A. 2002. Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 350: 283–298

    Article  Google Scholar 

  • Parés J M, van der Pluijm B A, Dinarès-Turell J. 1999. Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics, 307: 1–14

    Article  Google Scholar 

  • Pei J L, Zhou Z Z, Li H B, Sun Z M. 2016. Strike-slip of Altyn Tagh didn’t result in Qaidam Basin rotation since Middle-Miocene (in Chinese with English abstract). J Jilin Univ-Earth Sci Ed, 46: 163–174

    Google Scholar 

  • Roberts A P, Cui Y, Verosub K L. 1995. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J Geophys Res-Solid Earth, 100: 17909–17924

    Article  Google Scholar 

  • Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054–1058

    Article  Google Scholar 

  • Schwehr K, Tauxe L, Driscoll N, Lee H. 2006. Detecting compaction disequilibrium with anisotropy of magnetic susceptibility. Geochem Geophys Geosyst, 7:Q11002

    Article  Google Scholar 

  • Singsoupho S, Bhongsuwan T, Elming S Å. 2015. Palaeocurrent direction estimated in Mesozoic redbeds of the Khorat Plateau, Lao PDR, Indochina Block using anisotropy of magnetic susceptibility. J Asian Earth Sci, 106: 1–18

    Article  Google Scholar 

  • Song B W, Spicer R A, Zhang K X, Ji J L, Farnsworth A, Hughes A C, Yang Y B, Han F, Xu Y D, Spicer T, Shen T Y, Lunt D J, Shi G L. 2020. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth Planet Sci Lett, 537: 116175

    Article  Google Scholar 

  • Song B W, Zhang K X, Ji J L, Lu J F, Chen R M. 2011. Outcrop sequence stratigraphy of the Paleogene strata of Dahonggou region in the northeast margin of Qaidam Basin (in Chinese with English abstract). Geol Sci Technol Inf, 30: 25–32

    Google Scholar 

  • Soto R, Larrasoaña J C, Arlegui L E, Beamud E, Oliva-Urcia B, Simón J L. 2009. Reliability of magnetic fabric of weakly deformed mudrocks as a palaeostress indicator in compressive settings. J Struct Geol, 31: 512–522

    Article  Google Scholar 

  • Su Q D, Nie J S, Saylor J E, Horton B K, Bush M A, Chen W H. 2016. An anisotropy of magnetic susceptibility study of the Cenozoic Dahonggou section in northern Qaidam Basin and its tectonic implications (in Chinese with English abstract). Quat Sci, 36: 859–869

    Google Scholar 

  • Sun J M, Zhu R X, An Z S. 2005. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault. Earth Planet Sci Lett, 235: 641–653

    Article  Google Scholar 

  • Sun Y Y, Liu J, Liang Y, Ji J L, Liu W G, Aitchison J C, Sun J M, Lu J F, Song B W, Xu Y D, Zhang K X, Liu Z H. 2020. Cenozoic moisture fluctuations on the northeastern Tibetan Plateau and association with global climatic conditions. J Asian Earth Sci, 200: 104490

    Article  Google Scholar 

  • Sun Z M, Li H B, Pei J L, Xu W, Pan J W, Si J L, Zhao L S, Zhao Y. 2012. Strike-slip movement of the Altyn Tagh fault and implications for mountain formation inferred from paleomagnetic data in northeastern Tibetan Plateau (in Chinese with English abstract). Acta Petrol Sin, 28: 1928–1936

    Google Scholar 

  • Tang Z H, Huang B C, Dong X X, Ji J L, Ding Z L. 2012. Anisotropy of magnetic susceptibility of the Jingou River section: Implications for late Cenozoic uplift of the Tian Shan. Geochem Geophys Geosyst, 13: Q03022

    Article  Google Scholar 

  • Tarling D H, Hrouda F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman & Hall

    Google Scholar 

  • Thompson R, Oldfield F. 1986. Environmental Magnetism. Winchester: Allen and Unwin

    Book  Google Scholar 

  • Tong K, Li Z W, Zhu L D, Tao G, Zhang Y X, Yang W G, Zhang J L. 2020. Fold-and-thrust deformation of the hinterland of Qilian Shan, northeastern Tibetan Plateau since Mesozoic with implications for the plateau growth. J Asian Earth Sci, 198: 104131

    Article  Google Scholar 

  • van Hinsbergen D J J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc Natl Acad Sci USA, 109: 7659–7664

    Article  Google Scholar 

  • van Hinsbergen D J J, Lippert P C, Li S, Huang W, Advokaat E L, Spakman W. 2019. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics, 760: 69–94

    Article  Google Scholar 

  • van Hinsbergen D J J, Steinberger B, Doubrovine P V, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J Geophys Res, 116: B06101

    Google Scholar 

  • Wang B Q, Xiao A C, Cheng X G, He G Y, Chen H L, Yang S F. 2005. Geometry and kinematics of Cenozoic right-lateral strike-slip thrust structural belt in the north margin of the Qaidam Basin (in Chinese with English abstract). J Zhejiang Univ-Sci Ed, 32: 225–230

    Google Scholar 

  • Wang C S, Dai J G, Zhao X X, Li Y L, Graham S A, He D F, Ran B, Meng J. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1–43

    Article  Google Scholar 

  • Wang E, Burchfiel B C. 2004. Late Cenozoic right-lateral movement along the Wenquan Fault and associated deformation: Implications for the kinematic history of the Qaidam Basin, northeastern Tibetan Plateau. Int Geol Rev, 46: 861–879

    Article  Google Scholar 

  • Wang E, Xu F Y, Zhou J X, Wan J, Burchfiel B C. 2006. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems. GSA Bull, 118: 349–365

    Article  Google Scholar 

  • Wang G C, Cao K, Zhang K X, Wang A, Liu C, Meng Y N, Xu Y D. 2011. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic. Sci China Earth Sci, 54: 29–44

    Article  Google Scholar 

  • Wang W T, Zhang P Z, Liu C C, Zheng D W, Yu J X, Zheng W J, Wang Y Z, Zhang H P, Chen X Y. 2016b. Pulsed growth of the West Qinling at ∼30 Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance. J Geophys Res-Solid Earth, 121: 7754–7774

    Article  Google Scholar 

  • Wang W T, Zhang P Z, Pang J Z, Garzione C, Zhang H P, Liu C C, Zheng D W, Zheng W J, Yu J X. 2016a. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: A sedimentary archive from the Jiuxi Basin. J Geophys Res-Solid Earth, 121: 2235–2257

    Article  Google Scholar 

  • Wang W T, Zheng W J, Zhang P Z, Li Q, Kirby E, Yuan D Y, Zheng D W, Liu C C, Wang Z C, Zhang H P, Pang J Z. 2017. Expansion of the Tibetan Plateau during the Neogene. Nat Commun, 8: 15887

    Article  Google Scholar 

  • Wang Y B. 2019. Cenozoic deformation of the northern Qaidam Basin and its spatial variation (in Chinese with English abstract). Doctoral Dissertation. Hangzhou: Zhejiang University

    Google Scholar 

  • Wu L, Gong Q L, Qin S H. 2013. When did Cenozoic left-slip along the Altyn Tagh Fault initiate? A comprehensive approach (in Chinese with English abstract). Acta Petrol Sin, 29: 2837–2850

    Google Scholar 

  • Wu L, Lin X B, Cowgill E, Xiao A C, Cheng X G, Chen H, Zhao H F, Shen Y, Yang S F. 2019. Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau. GSA Bull, 131: 1157–1178

    Article  Google Scholar 

  • Xiao A C, Wu L, Li H G, Wang L Q. 2013. Tectonic processes of the Cenozoic Altyn Tagh Fault and its coupling with the Qaidam Basin, NW China (in Chinese with English abstract). Acta Petrol Sin, 29: 2826–2836

    Google Scholar 

  • Xiao A C, Yang S F, Chen X G, Dang Y Q, Chen X L, Chen Y Z, Wang L. 2006. Right-lateral strike-slip thrust system and its dynamics along the northern margin of Qaidam Basin (in Chinese with English abstract). Oil Gas Geol, 27: 482–487, 494

    Google Scholar 

  • Xiao G Q, Guo Z T, Dupont-Nivet G, Lu H Y, Wu N Q, Ge J Y, Hao Q Z, Peng S Z, Li F J, Abels H A, Zhang K X. 2012. Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth Planet Sci Lett, 317–318: 185–195

    Article  Google Scholar 

  • Yan M, Fang X, Van Der Voo R, Song C, Li J. 2013. Neogene rotations in the Jiuquan Basin, Hexi Corridor, China. Geol Soc Lond Spec Publ, 373: 173–189

    Article  Google Scholar 

  • Yan M D, VanderVoo R, Fang X M, Parés J M, Rea D K. 2006. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet. Earth Planet Sci Lett, 241: 234–247

    Article  Google Scholar 

  • Yin A, Dang Y Q, Wang L C, Jiang W M, Zhou S P, Chen X H, Gehrels G E, McRivette M W. 2008a. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin. GSA Bull, 120: 813–846

    Article  Google Scholar 

  • Yin A, Dang Y Q, Zhang M, Chen X H, McRivette M W. 2008b. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. GSA Bull, 120: 847–876

    Article  Google Scholar 

  • Yin A, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Q, Zhou X Q, Wang X F, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. GSA Bull, 114: 1257–1295

    Article  Google Scholar 

  • Yu X J, Fu S T, Guan S W, Huang B C, Cheng F, Cheng X, Zhang T, Guo Z J. 2014b. Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block. Geochem Geophys Geosyst, 15: 2109–2127

    Article  Google Scholar 

  • Yu X J, Huang B C, Guan S W, Fu S T, Cheng F, Cheng X, Zhang T, Guo Z J. 2014a. Anisotropy of magnetic susceptibility of Eocene and Miocene sediments in the Qaidam Basin, Northwest China: Implication for Cenozoic tectonic transition and depocenter migration. Geochem Geophys Geosyst, 15: 2095–2108

    Article  Google Scholar 

  • Yuan D Y, Ge W P, Chen Z W, Li C Y, Wang Z C, Zhang H P, Zhang P Z, Zheng D W, Zheng W J, Craddock W H, Dayem K E, Duvall A R, Hough B G, Lease R O, Champagnac J D, Burbank D W, Clark M K, Farley K A, Garzione C N, Kirby E, Molnar P, Roe G H. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics, 32: 1358–1370

    Article  Google Scholar 

  • Yuan D Y, Zhang P Z, Liu B C, Gan W J, Mao F Y, Wang Z C, Zheng W J, Guo H. 2004. Geometrical imagery and tectonic transformation of late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau (in Chinese with English abstract). Acta Geol Sin, 78: 270–278

    Google Scholar 

  • Yue L, Heller F, Qiu Z, Zhang L, Xie G, Qiu Z, Zhang Y. 2001. Magnetostratigraphy and pavleo-environmental record of Tertiary deposits of Lanzhou Basin. Chin Sci Bull, 46: 770–773

    Article  Google Scholar 

  • Yue Y J, Liou J G. 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27: 227–230

    Article  Google Scholar 

  • Zhang H P, Craddock W H, Lease R O, Wang W, Yuan D Y, Zhang P Z, Molnar P, Zheng D W, Zheng W J. 2012. Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau. Basin Res, 24: 31–50

    Article  Google Scholar 

  • Zhang J, Wang Y, Zhang B, Zhao H. 2015. Evolution of the NE Qinghai-Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China. J Asian Earth, 97: 10–23

    Article  Google Scholar 

  • Zhang J, Wang Y, Zhang B, Zhang Y. 2016. Tectonics of the Xining Basin in NW China and its implications for the evolution of the NE Qinghai-Tibetan Plateau. Basin Res, 28: 159–182

    Article  Google Scholar 

  • Zhang P Z, Zheng D W, Yin G M, Yuan D Y, Zhang G L, Li C Y, Wang Z C. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau (in Chinese with English abstract). Quat Sci, 26: 5–13

    Google Scholar 

  • Zhang W L. 2006. Cenozoic uplift of the Tibetan Plateau: Evidence from high resolution magnetostratigraphy of the Qaidam Basin (in Chinese with English abstract). Doctoral Dissertation. Lanzhou: Lanzhou University

    Google Scholar 

  • Zheng D W, Clark M K, Zhang P Z, Zheng W J, Farley K A. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere, 6: 937–941

    Article  Google Scholar 

  • Zhuang G, Hourigan J K, Ritts B D, Kent-Corson M L. 2011. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, northwest China. Am J Sci, 311: 116–152

    Article  Google Scholar 

  • Zhuang G S, Johnstone S A, Hourigan J, Ritts B, Robinson A, Sobel E R. 2014. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth Planet Sci Lett, 390: 186–198

    Article  Google Scholar 

  • Zhuang G, Johnstone S A, Hourigan J, Ritts B, Robinson A, Sobel E R. 2018. Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers. Gondwana Res, 58: 195–210

    Article  Google Scholar 

  • Zuza A V, Yin A. 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet. Tectonophysics, 677–678: 227–240

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the responsible editor and anonymous reviewers for their constructive suggestions, which improved our manuscript. We are grateful to Guangsheng ZHUANG for improving English manuscript and to Yadong XU, Bowen SONG, Zhaowen WANG, Jianyu ZHANG, Jingfang LU, and He YE for sample collection. This study was supported by the National Natural Science Foundation of China (Grant Nos. 42274105, 41972208, 42172251), the Geological Survey of China (Grant No. DD20190370), and the National Oil and Gas Major Science and Technology Project (Grant No. 2016ZX05003-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Ji.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Ji, J., Li, B. et al. Paleomagnetic constraints on Paleogene-Neogene rotation and paleo-stress in the northern Qaidam Basin. Sci. China Earth Sci. 65, 2385–2404 (2022). https://doi.org/10.1007/s11430-021-9949-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9949-1

Keywords

Navigation