Skip to main content
Log in

Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Four intensive uplift periods, i.e., 60-35, 25-17 and 12-8 Ma (but 18-13 Ma in the Himalayas of the southern Tibet), and since about 5 Ma, can be determined on the Tibetan Plateau by synthetical analysis of low-temperature thermo-chronology data, sedimentary deposit records, and structural deformation records of different areas. The strong tectonic uplift periods in different areas on the Tibetan Plateau are penecontemporaneous, except for the Himalayan area of the southern Tibet, where a rapid uplift and exhumation period, controlled by the activity of the South Tibetan Detachment System faults, occurred during 18-13 Ma. These strong uplift and exhumation periods correspond well to intensive deformation activity periods, suggesting tectonically-controlled uplift and exhumation. The deposit records, such as the distribution of coarse clastic sediments, the distribution of tectonically-controlled basins, stratigraphic discontinuousness or unconformity, and fault-controlled geomorphologic evolution, also match well with the strong uplift and exhumation periods. Expanding processes of the plateau are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaud N O, Brunel M, Cantagrel J M, et al. High cooling and denudation rates at Kongur Shan, Eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology. Tectonics, 1993, 12: 1335–1346

    Article  Google Scholar 

  2. Wang E Q, Wan J L, Liu J. Late Cenozoic Geological evolution of the foreland basin bordering the west Kunlun range in Pulu Area: Constrain on timing of uplift of northern margin of the Tibet Plateau. J Geophysl Res, 2003, 108: 1–15

    Google Scholar 

  3. Wang J. Uplift of the Karibasheng and Kuzigan granite in the West Kunlun Mountains: Evidence from apatite fission track analysis (in Chinese). Geol Rev, 1998, 44: 435–442

    Google Scholar 

  4. Wang Y B, Wang Y, Liu X, et al. Apatite fission-track records of Mesozoic and Cenozoic episodic reactivation of the Tianshan and West Kunlun Mountains (in Chinese). Reg Geol China, 2001, 20: 94–99

    Google Scholar 

  5. Li D F, Zhao Y, Hu J M, et al. Fission track thermochronologic constrains on plateau surface and geomorphic relief formation on the northwestern margin of the Tibetan Plateau (in Chinese). Acta Petrol Sin, 23: 900–910

  6. Wan J L, Wang E Q. Fission track evidence of uplift at Pulu area, western Kunlun (in Chinese). Nuclear Tech, 2002, 25: 565–567

    Google Scholar 

  7. Robinson A C, Yin A, Manning C E, et al. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geol Soc Am Bull, 2004, 116: 953–973

    Article  Google Scholar 

  8. Xu Z Q, Qi X X, Yang J S, et al. Senses and timings of two kinds of shear in the Kangxiwar strike-slip shear zone, West Kunlun, and their tectonic significance (in Chinese). Geol Bull China, 2007, 26: 1252–1261

    Google Scholar 

  9. Yin A, Rumelhart P E, Butler R. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol Soc Am Bull, 2002, 114: 1257–1295

    Article  Google Scholar 

  10. Shao L Y, He Z P, Gu J Y, et al. Lithofacies palaeogeography of the Paleogene in Tarim Basin (in Chinese). J Palaeogeograph, 2006, 8: 353–364

    Google Scholar 

  11. Brunel M, Arnaud N, Tapponnier P, et al. Kongur Shan normal fault: Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir). Geology, 2004, 22: 707–710

    Article  Google Scholar 

  12. Jin X C, Wang J, Chen B W, et al. Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications. J Asian Earth Sci, 2003, 21: 755–765

    Article  Google Scholar 

  13. Chen J, Lu Y C, Ding G Y. Records of late Cenozoic mountain building in western Tarim Basin: Molasses, growth strata and growth unconformity (in Chinese). Quat Sci, 2001, 21: 528–539

    Google Scholar 

  14. Pan Y B, Li D P, Guo F F, et al. Geomorphological features of the Keriya River valley and the early-middle Pleistocene great lake of the Tarim Basin (in Chinese). Geol Bull China, 2008, 27: 814–822

    Google Scholar 

  15. Zheng H B, Powell C M, An Z S, et al. Pliocene uplift of the northern Tibetan Plateau. Geology, 2000, 28: 715–718

    Article  Google Scholar 

  16. Bai D Y, Meng D B, Liu Y R, et al. Apatite fission-track records of the tectonic uplift of the central segment of the Kunlun Mountains on the northern margin of the Qinghai-Tibet Plateau (in Chinese). Geol China, 2003, 30: 240–246

    Google Scholar 

  17. Bai Y S, Ren E F, Fan G L, et al. Apatite fission track evidence for the Miocene rapid uplift of the Qimantag Mountains on the northwestern margin of the Qinghai-Tibet Plateau (in Chinese). Geol Bull China, 2008, 27: 1044–1048

    Google Scholar 

  18. Chen Z L, Gong H L, Li L, et al. Cenozoic uplifting and exhumation process of the Altyn Tagh mountains (in Chinese). Earth Sci Front, 2006, 13: 91–102

    Google Scholar 

  19. Chen Z L, Wan J L, Wang X F, et al. Rapid strike-slip of the Altyn Tagh fault at 8 Ma and its geological implications (in Chinese). Acta Geosci Sin, 2002, 23: 295–300

    Google Scholar 

  20. Chen Z L, Zhang Y Q, Wang X F, et al. Fission track dating of apatite constrains on the Cenozoic uplift of the Altyn Tagh Mountain (in Chinese). Acta Geosci Sin, 2001, 22: 413–418

    Google Scholar 

  21. Wan J L, Wang Y, Li Q, et al. FT evidence of northern Altyn uplift in Late-Cenozoic (in Chinese). Bull Mineral Petrol Geochem, 2001, 20: 222–224

    Google Scholar 

  22. Wang Y, W J L, Li Q, et al. Fission-track evidence for the Cenozoic uplift and erosion of the northern segmeng of the Altyn Tagh fault zone at the Aksay-Dangjin pass (in Chinese). Acta Geol Sin, 2002, 76: 191–198

    Google Scholar 

  23. Sobel E R, Arnaud N, Jolivet M, et al. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, NW China, constrained by 40Ar/39Ar and apatite fission track thermochronology. In: Hendrix M S, Davis G R, eds. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation. Geol Soc Am Memoir, 2001, 194: 247–267

  24. Yuan W M, Dong J Q, Wang S C, et al. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. J Asian Earth Sci, 2006, 27: 847–856

    Article  Google Scholar 

  25. Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: Fission track constraints. Tectonophysics, 2001, 343: 111–134

    Article  Google Scholar 

  26. Wang G C, Xiang S Y, Garver J I, et al. Uplift and exhumation during Mesozoic in Halaguole-Hatu area, east segment of the eastern Kunlun—Evidence from zircon and apatite fission-track ages (in Chinese). Earth Sci—J China Univ Geosci, 2003, 28: 645–652

    Google Scholar 

  27. Wang A, Wang G C, Xie D F, et al. Fission track geochronology of Xiaonanchuan pluton and the morphotectonic evolution of eastern Kunlun since late Miocene (in Chinese). Earth Sci—J China Univ Geosci, 2007, 32: 51–58

    Google Scholar 

  28. Zheng D W, Zhang P Z, Wan J L, et al. Late Cenozoic deformation time sequence on the northeastern margin of the Tibetan Plateau -records of detrital apatite fission-track ages from Linxia Basin (in Chinese). Sci China Ser D-Earth Sci, 2003, 33(Suppl.): 190–198

    Google Scholar 

  29. Fang X M, Song C H, Dai S, et al. Cenozoic deformation and uplift of the NE Qinghai-Tibet Plateau: Evidence from high-resolution magnetostratigraphy and basin evolution (in Chinese). Earth Sci Front, 2007, 14: 230–242

    Article  Google Scholar 

  30. Zhang P Z, Zheng D W, Yin G M, et al. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau (in Chinese). Quat Sci, 2006, 26: 5–13

    Google Scholar 

  31. Yuan D Y, Zhang P Z, Fang X M, et al. Late Cenozoic tectonic deformation of the Linxia Basin, northeastern margin of the Qinghai-Tibet Plateau. Earth Sci Front, 2007, 14: 243–250

    Google Scholar 

  32. Song C H, Fang X M, Li J J, et al. Tectonic uplift and sedimentary evolution of the Jiuxi Basin on the northern margin of the Tibetan Plateau since 13 Ma BP. Sci China Ser D-Earth Sci, 2001, 44(Suppl): 192–202

    Article  Google Scholar 

  33. Yin A, Dang Y Q, Chen X H, et al. Cenozoic evolution and tectonic reconstruction of the Qaidam Basin: Evidence from seismic profiles (in Chinese). J Geomech, 2007, 113: 193–211

    Google Scholar 

  34. Zhong D L, Ding L. Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism. Sci China Ser D-Earth Sci, 1996, 39: 369–379

    Google Scholar 

  35. Lai Q Z, Ding L, Wang H W, et al. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology. Sci China Ser D-Earth Sci, 2007, 50: 172–183

    Article  Google Scholar 

  36. Clark M K, House M A, Royden L H, et al. Late Cenozoic uplift of southeastern Tibet. Geology, 2005, 33: 525–528

    Article  Google Scholar 

  37. Zhang Y, Li Y, Zhou R J, et al. The denudation of the eastern margin of the Qinghai-Xizang Plateau since the late Cenozoic: Evidence from the fission-track age (in Chinese). Sediment Geol Tethyan Geol, 2006, 26: 97–102

    Google Scholar 

  38. Ding L, Zhong D L, Pan Y S, et al. Fission track dating evidence on fast uplifting since Pliocene of the eastern Himalayan syntaxis. Chin Sci Bull, 1995, 40: 1479–1500

    Google Scholar 

  39. Wang G, Wan J L, Wang E Q, et al. Extensional collapse of the southern part of the Gaoligong Range in the Western Yunnan, China and its tectonic origin (in Chinese). Acta Geol Sin, 2006, 80: 1262–1273

    Google Scholar 

  40. Lei Y L, Ji J Q, Gong D H, et al. Thermal and denudational history of granitoid batholith recorded by apatite fission track in the Dulong River region in northwestern Yunnan, since the late Miocene (in Chinese). Acta Petrol Sin, 2006, 22: 938–948

    Google Scholar 

  41. Xiang H F, Wan J L, Han Z J, et al. Geological analysis and FT dating of the large-scale right-lateral strike-slip movement of the Red River fault zone. Sci China Ser D-Earth Sci, 2007, 50: 331–342

    Article  Google Scholar 

  42. Shi X B, Qiu X L, Liu H L, et al. Cenozoic cooling history of Lincang granitoid batholith, western Yunnan: Evidence from Fission track data (in Chinese). Chin J Geophys, 2006, 49: 135–142

    Google Scholar 

  43. Zhang J J, Ji J Q, Zhong D L, et al. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Sci China Ser D-Earth Sci, 2004, 47: 138–150

    Article  Google Scholar 

  44. Zhang Y Q, Chen W, Yang N. 40Ar/39Ar dating of shear deformation of the Xianshuihe fault zone in west Sichuan and its tectonic significance. Sci China Ser D-Earth Sci, 2004, 47: 794–803

    Google Scholar 

  45. Li Y, Zhou R J, Densemmore A L, et al. Geomorphic and sedimentary evidence for reversion of strike-slip direction in Longmen Shan fault zone (in Chinese). J Mineral Petrol, 2006, 26: 26–34

    Google Scholar 

  46. Wang Z X, Xu Z Q, Yang T N, et al. Study of deformation mechanism of the Xianshuihe fault zone, a shallow level, high temperature ductile shear zone (in Chinese). Reg Geol China, 1996, 3: 244–251

    Google Scholar 

  47. Wang Y, Wan J L, Li D M, et al. Thermochronological evidence of tectonic uplift in Nyalam, South Tibetan Detachment System (in Chinese). Bull Mineral Petrol Geochem, 2001, 20: 292–294

    Google Scholar 

  48. Burbank D W, Blythe A E, Putkonen J, et al. Decoupling of erosion and precipitation in the Himalayas. Nature, 2003, 426: 652–655

    Article  Google Scholar 

  49. Bojar A V, Fritz H, Nicolescu S. Timing and mechanisms of Central Himalayan exhumation: Discriminating between tectonic and erosion processes. Terra Nova, 2005, 17: 427–433

    Article  Google Scholar 

  50. Burg J P, Nievergelt P, Oberli F, et al. Erosion of crustal folds in the Himalayan syntaxes. Terra Nostra (Bonn), 1998, 98-1: 5

    Google Scholar 

  51. Lee J, Hacker B R, Dingklage W S, et al. Evolution of Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 2000, 19: 872–895

    Article  Google Scholar 

  52. Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105: 295–317

    Article  Google Scholar 

  53. Schlup M, Carter A, Cosca M, et al. Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission track ages: The Indus River-Tso Morari transect, NW Himalaya. J Geol Soc, 2003, 160: 385–399

    Article  Google Scholar 

  54. Sorkhabi R B, Stump E, Foland K A, et al. Fission-track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India. Tectonophysics, 1996, 260: 187–199

    Article  Google Scholar 

  55. Thiede R C, Bookhagen B J, Arrowsmith R, et al. Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet Sci Lett, 2004, 222: 791–806

    Article  Google Scholar 

  56. Zeitler P K. Cooling history of the NW Himalaya, Pakistan. Tectonics, 1985, 4: 127–151

    Article  Google Scholar 

  57. Wang E Q, Chen L Z, Chen Z L. Tectonic and climatic element-contrlled evolution of the Yalungzangbu River in southern Tibet (in Chinese). Quat Sci, 2002, 22: 365–373

    Google Scholar 

  58. Ding L. Paleocene deep-water sediments and radiolarian faunas: Implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet. Sci China Ser D-Earth Sci, 2003, 46: 84–96

    Article  Google Scholar 

  59. Li G B, Wan X Q, Qi H R G, et al. Eocene fossil carbonate microfacies and sedimentary environment in Gangba-Tingri, southern Tibet (in Chinese). Chin Geol, 2002, 29: 401–406

    Google Scholar 

  60. Wan X Q. Cretaceous-early Tertiary foraminfera of Xizang (Tibet) and evolution of the Tethys-Hinalayan sea (in Chinese). Acta Micropalaeont Sin, 1990, 7: 169–186

    Google Scholar 

  61. Zhao Z Z, Li Y T, Ye H F, et al. Stratigraphy of the Qinghai-Tibet Pateau (in Chinese). Beijing: Science Press, 2001. 1–542

    Google Scholar 

  62. Zhang K X, Wang G C, Cao K, et al. Cenozoic sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet Plateau. Sci China Ser D-Earth Sci, 2008, 51: 1658–1672

    Article  Google Scholar 

  63. Coleman M E, Hodges K V. Evidence for Tibetan Plateau uplift be fore 14 Myr ago from a new minimum age for east west extension. Nature, 1995, 374: 49–52

    Article  Google Scholar 

  64. Coleman M E. U-Pb constraints on Oligocene-Miocene deformation and anatexis within the central Himalaya, Marsyandi valley, Nepal. Am J Sci, 1998, 298: 553–571

    Article  Google Scholar 

  65. Harris N. Significance of weathering Himalayan metasedimentary rocks and leucogranites for the Sr isotope evolution of sea water during early Miocene. Geology, 1995, 23: 759–798

    Article  Google Scholar 

  66. Parrish R R, Hodges, K V. Miocene (22 ±1 Ma) metamorphism and two stage thrusting in the Greater Himalayan sequence, Annapurna Sanctuary, Nepal. Geol Soc Amer Abstract Prog, 1993, 25: 174

    Google Scholar 

  67. Pan G T, Wang P S, Xu Y R, et al. Cenozoic Tectonic Evolution of Qinghai-Xizang Plateau (in Chinese). Beijing: Geological Publishing House, 1990. 1–165

    Google Scholar 

  68. Harrison T M, Copeland P, Kidd W S, et al. Raising Tibet. Science, 1992, 255: 1663–1670

    Article  Google Scholar 

  69. Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. J Geophys Res, 1994, 99: 18175–18201

    Article  Google Scholar 

  70. Li H B, Franck V, Liu D Y, et al. Initial movement of the Karakorum Fault in western Tibet: Constraints from SHRIMP U-Pb dating of zircons. Chin Sci Bull, 2007, 52: 1089–1100

    Article  Google Scholar 

  71. Searle M P, Godin L. The South Tibetan Detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal J Geol, 2003, 111: 505–523

    Google Scholar 

  72. Burchfiel B C, Chen Z L, Hodges K V, et al. The South Tibet Detachment System, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Spe Paper—Geol Soc Am, 1992, 269: 1–41

    Google Scholar 

  73. Hodges K V, Bowring, S, Davidek, K, et al. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 1998, 26: 483–486

    Article  Google Scholar 

  74. Harrison T M, Copeland P, Kidd W, et al. Activation of the Nyainqentanghla shear zone: Implications for uplift of the southern Tibetan Plateau. Tectonics, 1995, 14: 658–676

    Article  Google Scholar 

  75. Liu W C, Wang Y, Zhang X X, et al. The rock types and isotope dating of the Kangmar gneissic dome in southern Tibet (in Chinese). Earth Sci Front, 2004, 11: 491–501

    Google Scholar 

  76. Thiede R C, Arrowsmith R, Bookhagen B J, et al. Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Geol Soc Am Bull, 2006, 118: 635–650

    Article  Google Scholar 

  77. Thiede R C, Arrowsmith R, Bookhagen B J, et al. From tectonically to erosionally controlled development of the Himalayan orogen. Geology, 2005, 33: 689–692

    Article  Google Scholar 

  78. Vannay J C, Grasemann B, Rahn M, et al. Miocene to Holocene exhumation of metamorphic crustal wedges in the Himalayan orogen: Evidence for tectonic extrusion coupled to fluvial erosion. Tectonics, 2004, 23: 1–24

    Article  Google Scholar 

  79. Godin L, Parrish R R, Brown R L, et al. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb geochronology and 40Ar/39Ar thermochronology. Tectonics, 2001, 20: 729–747

    Article  Google Scholar 

  80. Yuan W M, Wang S C, Yang Z Q, et al. Fission track dating evidence on tectonic activities of northern Himalaya block (in Chinese). Nuclear Tech, 2002, 25: 451–454

    Google Scholar 

  81. Liu S S, Zhang F. Fission track ages and uplift rates of the South Xizang (Tibet) region. Sci China Ser B, 1988, 16: 971–983

    Google Scholar 

  82. Yuan W M, Wang S C, Li S R, et al. Apatite fission track dating evidence on the tectonization of Gangdese block, south Qinghai-Tibetan Plateau. Chin Sci Bull, 2002, 47: 239–242

    Article  Google Scholar 

  83. Yuan W M, Du Y S, Yang L Q, et al. Apatite fission track studies on the tectonics in Nanmulin area of Gangdese terrane, Tibetan Plateau (in Chinese). Acta Petrol Sin, 2007, 23: 2911–2917

    Google Scholar 

  84. Yuan W M, Dong J Q, Bao Z K, et al. Apatite fission track evidences for Neogene tectono-thermal history in Nimu area, southern Gangdese terrane, Tibetan Plateau (in Chinese). Atomic Energy Sci Tech, 2008, 42: 570–573

    Google Scholar 

  85. Wang Y, Zhang X M, Sun L X, et al. Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and apatite fission-track thermochronology. In: 19th Himalaya-Karakoram-Tibet Workshop. J Asian Earth Sci, 2007, 29: 266–282

    Google Scholar 

  86. Wu Z H, Hu D G, Liu Q S, et al. Chronological analyses of the thermal evolution of granite and the uplift process of the Nyainqentanglha range in central Tibet (in Chinese). Acta Geosic Sin, 2005, 26: 505–512

    Google Scholar 

  87. Wu Z H, Meng X G, Hu D G, et al. New results and major progress in regional geological survey of the Damxung County Sheet (in Chinese). Geol Bull China, 2004, 23: 484–491

    Google Scholar 

  88. Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105: 4987–4992

    Article  Google Scholar 

  89. Zhang K X, Wang G C, Chen F N, et al. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene (in Chinese). Earth Sci—J China Univ Geosci, 2007, 32: 583–597

    Google Scholar 

  90. Qian D Y. A discussion on the age of Qiuwu coal measures and the preliminary correlation of the molasse formation at the Ladakh-Gandise marginal mountain chain (in Chinese). Contrib Geol Qinghai-Xizang Plateau, 1985, 16: 229–241

    Google Scholar 

  91. Xiao J D. The early Tertiary Ouli Formation and its scleractinia in Ngari region Xizang (Tibet) (in Chinese). Contrib Geol Qinghai-Xizang Plateau, 1988, 19: 120–131

    Google Scholar 

  92. Zhang B G, Mu X N. The discovery of the Tertiary marine deposits to the north of the Yarlung Zangbo River, Xizang (in Chinese). Acta Stratigraph Sin, 1979, 3: 65–66

    Google Scholar 

  93. Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese Batholith, southern Tibet: A history of episodic unroofing. Tectonics, 1995, 14: 223–236

    Article  Google Scholar 

  94. Grujic D, Coutand I, Bookhagen B, et al. Climate forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology, 2006, 34: 801–804

    Article  Google Scholar 

  95. Burbank D W, Derry L A, France-Lanord C. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 1993, 364: 48–50

    Article  Google Scholar 

  96. Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671–1677

    Article  Google Scholar 

  97. Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32: 809–812

    Article  Google Scholar 

  98. Li H B, Yang J S, Xu Z Q, et al. Age of the Altyn Tagh Fault: Evidence from U-Pb SHRIMP dating of the syn-tectonic zircon (in Chinese). Geol Rev, 2001, (3): 316–317

    Google Scholar 

  99. Li H B, Yang J S. Evidence for Cretaceous uplift of the northern Qinghai-Tibetan Plateau (in Chinese). Earth Sci Front, 2004, 11: 345–359

    Google Scholar 

  100. Burchfiel B C, Chen Z L, Liu Y P, et al. Tectonics of the Longmen Shan and adjacent regions, central China. Intern Geol Rev, 1995, 37: 661–735

    Article  Google Scholar 

  101. Chen S F, Wilson C J L. Emplacement of the Longmen Shan thrust-nappe belt along the eastern margin of the Tibetan Plateau. J Struct Geol, 1996, 18: 413–430

    Article  Google Scholar 

  102. Liu Y J, Genser J, Neubauer F, et al. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 2005, 398: 199–224

    Article  Google Scholar 

  103. Wang G C, Xiang S Y, Wang A, et al. Thermochronological constraint to the processes of the East Kunlun and adjacent areas in Mesozoic-early Cenozoic (in Chinese). Earth Sci—J China Univ Geosci, 2007, 32: 605–614

    Google Scholar 

  104. Dai S, Fang X M, Song C H, et al. Early tectonic uplift of the northern Tibetan Plateau. Chin Sci Bull, 2005, 50: 1642–1652

    Article  Google Scholar 

  105. Rowley D B, Currie B S. Paleo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006, 439: 677–681

    Article  Google Scholar 

  106. DeCelles P G, Quade J, Kapp P, et al. High and dry in central Tibet during the late Oligocene. Earth Planet Sci Lett, 2007, 253: 389–401

    Article  Google Scholar 

  107. Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421: 622–624

    Article  Google Scholar 

  108. Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 2005, 33: 181–184

    Article  Google Scholar 

  109. Garzione C N, DeCelles P G, Hodkinson D G, et al. East-west extension and Miocene environmental change in the southern Tibetan Plateau: Thakkhola graben, central Nepal. Geol Soc Am Bull, 2003, 115: 3–20

    Article  Google Scholar 

  110. Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology, 2000, 28: 339–342

    Article  Google Scholar 

  111. Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet Sci Lett, 2000, 183: 215–229

    Google Scholar 

  112. Wei Q R, Li D W, Wang G C, et al. Zircon SHRIMP U-Pb dating and geochemical characteristic of Chabaoma Formation volcanic rocks in northern Tibetan plateau and its petrogenesis (in Chinese). Acta Petrol Sin, 2007, 23: 2727–2736

    Google Scholar 

  113. Li J J, Fang X M, Pan B T, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on enviroments in surrounding area (in Chinese). Quat Sci, 2001, 21: 381–391

    Google Scholar 

  114. Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull, 1999, 44: 2117–2124

    Article  Google Scholar 

  115. Shi Y F, Li J J, Li B Y, et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during the late Cenozoic (in Chinese). Acta Geograph Sin, 1999, 54: 10–54

    Google Scholar 

  116. Cui Z J, Gao Q Z, Liu G N, et al. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) Plateau. Sci China Ser D-Earth Sci, 1996, 39: 391–400

    Google Scholar 

  117. Cui Z J, Wu Y Q, Liu G N, et al. On Kunlun-Yellow River tectonic movement. Sci China Ser D-Earth Sci, 1998, 41: 592–600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoCan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Cao, K., Zhang, K. et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic. Sci. China Earth Sci. 54, 29–44 (2011). https://doi.org/10.1007/s11430-010-4110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4110-0

Keywords

Navigation