Skip to main content
Log in

Dissolved organic carbon in permafrost regions: A review

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A large quantity of organic carbon (C) is stored in northern and elevational permafrost regions. A portion of this large terrestrial organic C pool will be transferred by water into soil solution (~0.4 Pg C yr−1) (1 Pg=1015 g), rivers (~0.06 Pg C yr−1), wetlands, lakes, and oceans. The lateral transport of dissolved organic carbon (DOC) is the primary pathway, impacting river biogeochemistry and ecosystems. However, climate warming will substantially alter the lateral C shifts in permafrost regions. Vegetation, permafrost, precipitation, soil humidity and temperature, and microbial activities, among many other environmental factors, will shift substantially under a warming climate. It remains uncertain as to what extent the lateral C cycle is responding, and will respond, to climate change. This paper reviews recent studies on terrestrial origins of DOC, biodegradability, transfer pathways, and modelling, and on how to forecast of DOC fluxes in permafrost regions under a warming climate, as well as the potential anthropogenic impacts on DOC in permafrost regions. It is concluded that: (1) surface organic layer, permafrost soils, and vegetation leachates are the main DOC sources, with about 4.72 Pg C DOC stored in the topsoil at depths of 0–1 m in permafrost regions; (2) in-stream DOC concentrations vary spatially and temporally to a relatively small extent (1–60 mg C L−1) and annual export varies from 0.1–10 g C m–2 yr–1; (3) biodegradability of DOC from the thawing permafrost can be as high as 71%, with a median at 52%; (4) DOC flux is controlled by multiple factors, mainly including vegetation, soil properties, permafrost occurrence, river discharge and other related environmental factors, and (5) many statistical and process-based models have been developed, but model predictions are inconsistent with observational results largely dependent on the individual watershed characteristics and future discharge trends. Thus, it is still difficult to predict how future lateral C flux will respond to climate change, but changes in the DOC regimes in individual catchments can be predicted with a reasonable reliability. It is advised that sampling protocols and preservation and analysis methods should be standardized, and analytical techniques at molecular scales and numerical modeling on thermokarsting processes should be prioritized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott B W, Jones J B, Schuur E A G, Chapin III F S, Bowden W B, Bret-Harte M S, Epstein H E, Flannigan M D, Harms T K, Hollingsworth T N, Mack M C, McGuire A D, Natali S M, Rocha A V, Tank S E, Turetsky M R, Vonk J E, Wickland K P, Aiken G R, Alexander H D, Amon R M W, Benscoter B W, Bergeron Y, Bishop K, Blarquez O, Ben Bond-Lamberty O, Breen A L, Buffam I, Cai Y, Carcaillet C, Carey S K, Chen J M, Chen H Y H, Christensen T R, Cooper L W, Cornelissen J H C, de Groot W J, DeLuca T H, Dorrepaal E, Fetcher N, Finlay J C, Forbes B C, French N H F, Gauthier S, Girardin M P, Goetz S J, Goldammer J G, Gough L, Grogan P, Guo L, Higuera P E, Hinzman L, Hu F S, Hugelius G, Jafarov E E, Jandt R, Johnstone J F, Jan Karlsson J F, Kasischke E S, Kattner G, Kelly R, Keuper F, Kling G W, Kortelainen P, Kouki J, Kuhry P, Laudon H, Laurion I, Macdonald R W, Mann P J, Martikainen P J, McClelland J W, Molau U, Oberbauer S F, Olefeldt D, Paré D, Parisien M A, Payette S, Peng C, Pokrovsky O S, Rastetter E B, Raymond P A, Raynolds M K, Rein G, Reynolds J F, Robards M, Rogers B M, Schädel C, Schaefer K, Schmidt I K, Shvidenko A, Sky J, Spencer R G M, Starr G, Striegl R G, Teisserenc R, Tranvik L J, Virtanen T, Welker J M, Zimov S. 2016. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environ Res Lett, 11: 034014

    Google Scholar 

  • Abbott B W, Larouche J R, Jones Jr. J B, Bowden W B, Balser A W. 2014. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J Geophys Res-Biogeosci, 119: 2049–2063

    Google Scholar 

  • Aiken G R, McKnight D M, Thorn K A, Thurman E M. 1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Org Geochem, 18: 567–573

    Google Scholar 

  • Aitkenhead J A, McDowell W H. 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem Cy, 14: 127–138

    Google Scholar 

  • Aitkenhead-Peterson J A. 2000. Source, production and export of dissolved organic carbon and nitrogen. Doctoral Dissertation. New Hampshire: University of New Hampshire

    Google Scholar 

  • Amon R M W, Rinehart A J, Duan S, Louchouarn P, Prokushkin A, Guggenberger G, Bauch D, Stedmon C, Raymond P A, Holmes R M, McClelland J W, Peterson B J, Walker S A, Zhulidov A V. 2012. Dissolved organic matter sources in large Arctic rivers. Geochim Cosmochim Acta, 94: 217–237

    Google Scholar 

  • Battin T J. 1999. Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an alpine stream hyporheic zone. Water Resour Res, 35: 3159–3169

    Google Scholar 

  • Bense V F, Kooi H, Ferguson G, Read T. 2012. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res, 117: F03036

    Google Scholar 

  • Betts E F, Jones Jr J B. 2009. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska. Arct Antarct Alp Res, 41: 407–417

    Google Scholar 

  • Bishop K H, Lundström U S, Giesler R. 1993. Transfer of organic C from forest soils to surface waters: Example from northern Sweden. Appl Geochem, 8: 11–15

    Google Scholar 

  • Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, DeAngelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res-Atmos, 118: 5380–5552

    Google Scholar 

  • Boyer E W, Hornberger G M, Bencala K E, McKnight D M. 2000. Effects of asynchronous snowmelt on flushing of dissolved organic carbon: A mixing model approach. Hydrol Process, 14: 3291–3308

    Google Scholar 

  • Brooks P D, McKnight D M, Bencala K E. 1999. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. Water Resour Res, 35: 1895–1902

    Google Scholar 

  • Carey S K. 2003. Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafrost Periglac Process, 14: 161–171

    Google Scholar 

  • Chapin III F S, Woodwell G M, Randerson J T, Rastetter E B, Lovett G M, Baldocchi D D, Clark D A, Harmon M E, Schimel D S, Valentini R, Wirth C, Aber J D, Cole J J, Goulden M L, Harden J W, Heimann M, Howarth R W, Matson P A, McGuire A D, Melillo J M, Mooney H A, Neff J C, Houghton R A, Pace M L, Ryan M G, Running S W, Sala O E, Schlesinger W H, Schulze E D. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9: 1041–1050

    Google Scholar 

  • Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10: 172–185

    Google Scholar 

  • Cory R M, Ward C P, Crump B C, Kling G W. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345: 925–928

    Google Scholar 

  • Christophersen N, Rustad S, Seip H M, Rosenqvist I T, Thrush B A, Sorensen N A, Chester P F. 1984. Modelling streamwater chemistry with snowmelt (and discussion). Philos Trans R Soc B-Biol Sci, 305: 427–439

    Google Scholar 

  • Dai M, Yin Z, Meng F, Liu Q, Cai W J. 2012. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis. Curr Opin Environ Sust, 4: 170–178

    Google Scholar 

  • De March L. 1975. Nutrient budgets and sedimentation in Char Lake, N. W. T., 72°42′N, 94°50′W. Master Thesis. Manitoba: The University of Manitoba

    Google Scholar 

  • De Wit H A, Mulder J, Hindar A, Hole L. 2007. Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environ Sci Technol, 41: 7706–7713

    Google Scholar 

  • Drake T W, Wickland K P, Spencer R G M, McKnight D M, Striegl R G. 2015. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc Natl Acad Sci USA, 112: 13946–13951

    Google Scholar 

  • Druffel E R M. 2004. Comments on the importance of black carbon in the global carbon cycle. Mar Chem, 92: 197–200

    Google Scholar 

  • Ewing S A, O’Donnell J A, Aiken G R, Butler K, Butman D, Windham-Myers L, Kanevskiy M Z. 2015. Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost. Geophys Res Lett, 42: 10,730–10,738

    Google Scholar 

  • Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous united states using a biogeochemistry model. Tellus B, 56: 230–248

    Google Scholar 

  • Finlay J, Neff J, Zimov S, Davydova A, Davydov S. 2006. Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: Implications for characterization and flux of river DOC. Geophys Res Lett, 33: L10401

    Google Scholar 

  • Ford T E, Ford S A, Lock M A, Naiman R J. 1990. Dissolved organic carbon concentrations and fluxes along the Moisie River, Quebec. Freshwater Biol, 24: 35–42

    Google Scholar 

  • Foster A, Jones D L, Cooper E J, Roberts P. 2016. Freeze-thaw cycles have minimal effect on the mineralisation of low molecular weight, dissolved organic carbon in Arctic soils. Polar Biol, 39: 2387–2401

    Google Scholar 

  • Freeman C, Fenner N, Ostle N J, Kang H, Dowrick D J, Reynolds B, Lock M A, Sleep D, Hughes S, Hudson J. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430: 195–198

    Google Scholar 

  • Frey K E, McClelland J W. 2009. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process, 23: 169–182

    Google Scholar 

  • Frey K E, Smith L C. 2005. Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett, 32: L09401

    Google Scholar 

  • Fritz M, Opel T, Tanski G, Herzschuh U, Meyer H, Eulenburg A, Lantuit H. 2015. Dissolved organic carbon (DOC) in Arctic ground ice. Cryosphere, 9: 737–752

    Google Scholar 

  • Futter M N, Butterfield D, Cosby B J, Dillon P J, Wade A J, Whitehead P G. 2007. Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resour Res, 43: W02424

    Google Scholar 

  • Giesler R, Lyon S W, Mörth C M, Karlsson J, Karlsson E M, Jantze E J, Destouni G, Humborg C. 2014. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences, 11: 525–537

    Google Scholar 

  • Grieve I C. 1991. A model of dissolved organic carbon concentrations in soil and stream waters. Hydrol Process, 5: 301–307

    Google Scholar 

  • Guo L, MacDonald R W. 2006. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochem Cy, 20: GB2011

    Google Scholar 

  • Guo Y D, Song C C, Tan W W, Wang X W, Lu Y Z. 2018. Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China. Hydrol Earth Syst Sci, 22: 1081–1093

    Google Scholar 

  • Guo Y D, Song C C, Wan Z M, Lu Y Z, Qiao T H, Tan W W, Wang L L. 2015. Dynamics of dissolved organic carbon release from a permafrost wetland catchment in northeast China. J Hydrol, 531: 919–928

    Google Scholar 

  • Guo Y D, Song C C, Wan Z M, Tan W W, Lu Y Z, Qiao T H. 2014. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China. Environ Sci-Processes Impacts, 16: 2496–2506

    Google Scholar 

  • Harms T K, Ludwig S M. 2016. Retention and removal of nitrogen and phosphorus in saturated soils of arctic hillslopes. Biogeochemistry, 127: 291–304

    Google Scholar 

  • Hausmann S, Pienitz R. 2009. Seasonal water chemistry and diatom changes in six boreal lakes of the Laurentian Mountains (Québec, Canada): Impacts of climate and timber harvesting. Hydrobiologia, 635: 1–14

    Google Scholar 

  • Hood E, McKnight D M, Williams M W. 2003. Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States. Water Resour Res, 39: 1188

    Google Scholar 

  • Hope D, Billett M F, Cresser M S. 1994. A review of the export of carbon in river water: Fluxes and processes. Environ Pollut, 84: 301–324

    Google Scholar 

  • Huang T H, Fu Y H, Pan P Y, Chen C T A. 2012. Fluvial carbon fluxes in tropical rivers. Curr Opin Environ Sustainability, 4: 162–169

    Google Scholar 

  • Hudon C, Morin R, Bunch J, Harland R. 1996. Carbon and nutrient output from the Great Whale River (Hudson Bay) and a comparison with other rivers around Quebec. Can J Fish Aquat Sci, 53: 1513–1525

    Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden J W, Schuur E A G, Ping C L, Schirrmeister L, Grosse G, Michaelson G J, Koven C D, O’Donnell J A, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11: 6573–6593

    Google Scholar 

  • Jin H, Luo D, Wang S, Lü L, Wu J. 2011. Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci Cold Arid Reg, 112: F02S09

    Google Scholar 

  • Jenerette D G, Lal R. 2005. Hydrologic sources of carbon cycling uncertainty throughout the terrestrial-aquatic continuum. Global Change Biol, 11: 1873–1882

    Google Scholar 

  • Judd K E, Kling G W. 2002. Production and export of dissolved C in arctic tundra mesocosms: The roles of vegetation and water flow. Biogeochemistry, 60: 213–234

    Google Scholar 

  • Justi M, Schellekens J, de Camargo P B, Vidal-Torrado P. 2017. Long-term degradation effect on the molecular composition of black carbon in Brazilian Cerrado soils. Org Geochem, 113: 196–209

    Google Scholar 

  • Jutras M F, Nasr M, Castonguay M, Pit C, Pomeroy J H, Smith T P, Zhang C, Ritchie C D, Meng F R, Clair T A, Arp P A. 2011. Dissolved organic carbon concentrations and fluxes in forest catchments and streams: DOC-3 model. Ecol Model, 222: 2291–2313

    Google Scholar 

  • Juutinen S, Väliranta M, Kuutti V, Laine A M, Virtanen T, Seppä H, Weckström J, Tuittila E S. 2013. Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach. J Geophys Res-Biogeosci, 118: 171–183

    Google Scholar 

  • Kicklighter D W, Hayes D J, McClelland J W, Peterson B J, McGuire A D, Melillo J M. 2013. Insights and issues with simulating terrestrial DOC loading of Arctic river networks. Ecol Appl, 23: 1817–1836

    Google Scholar 

  • Kindler R, Siemens J, Kaiser K, Walmsley D C, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grũnwald T, Heim A, Ibrom A, Jones S K, Jones M, Klumpp K, Kutsch W, Larsen K S, Lehuger S, Loubet B, Mckenzie R, Moors E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt M W I, Schrumpf M, Seyfferth J, Skiba U, Soussana J F, Sutton M A, Tefs C, Vowinckel B, Zeeman M J, Kaupenjohann M. 2011. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biol, 17: 1167–1185

    Google Scholar 

  • Koprivnjak J F, Moore T R. 1992. Sources, sinks, and fluxes of dissolved organic carbon in subarctic fen catchments. Arctic Alpine Res, 24: 204–210

    Google Scholar 

  • Larouche J R, Abbott B W, Bowden W B, Jones J B. 2015. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences, 12: 4221–4233

    Google Scholar 

  • Laudon H, Berggren M, Ågren A, Buffam I, Bishop K, Grabs T, Jansson M, Köhler S. 2011. Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: The role of processes, connectivity, and scaling. Ecosystems, 14: 880–893

    Google Scholar 

  • Laudon H, Hedtjärn J, Schelker J, Bishop K, Sørensen R, Ågren A. 2009. Response of dissolved organic carbon following forest harvesting in a Boreal forest. Ambio-A J Human Environ, 38: 381–386

    Google Scholar 

  • Lessels J S, Tetzlaff D, Carey S K, Smith P, Soulsby C. 2015. A coupled hydrology-biogeochemistry model to simulate dissolved organic carbon exports from a permafrost-influenced catchment. Hydrol Process, 29: 5383–5396

    Google Scholar 

  • Liao C. 2017. Three-dimensional water and carbon cycle modeling at high spatial-temporal resolutions. Dorctoral Dissertation. Indiana: Purdue University

    Google Scholar 

  • Likens G E. 2013. Biogeochemistry of Forested Ecosystem. 3rd ed. New York: Springer-Verlag. 103–112

    Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell J G, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. 2008. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences, 5: 1475–1491

    Google Scholar 

  • Lyon S W, Mörth M, Humborg C, Giesler R, Destouni G. 2010. The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-arctic catchment. Hydrol Earth Syst Sci, 14: 941–950

    Google Scholar 

  • MacLean R, Oswood M W, Irons Iii J G, McDowell W H. 1999. The effect of permafrost on stream biogeochemistry: A case study of two streams in the Alaskan (U.S.A.) taiga. Biogeochemistry, 47: 239–267

    Google Scholar 

  • Mann P J, Eglinton T I, McIntyre C P, Zimov N, Davydova A, Jorien E. Vonk, Holmes R M, Spencer R G. 2015. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun, 6: 7856

    Google Scholar 

  • McClelland J W, Stieglitz M, Pan F, Holmes R M, Peterson B J. 2007. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J Geophys Res, 112: G04S60

    Google Scholar 

  • McGill W B, Cannon K R, Robertson J A, Cook F D. 1986. Dynamics of soil microbial biomass and water-soluble organic carbon in Berton L after 50 years of cropping to 2 rotations. Can J Soil Sci, 66: 1–19

    Google Scholar 

  • Meybeck M. 1981. River transport of organic carbon to the ocean. In: Likens G E, Mackenzie F T, Richey J E, Sedell J R, Turekian K K, eds. Flux of Organic Carbon by Rivers to the Oceans. Washington D C: United States Department of Energy. 219–269

  • Michaelson G J, Ping C L, Kling G W, Hobbie J E. 1998. The character and bioactivity of dissolved organic matter at thaw and in the spring runoff waters of the arctic tundra north slope, Alaska. J Geophys Res, 103: 28939–28946

    Google Scholar 

  • Michalzik B, Tipping E, Mulder J, Lancho J F G, Matzner E, Bryant C L, Clarke N, Lofts S, Esteban M A V. 2003. Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry, 66: 241–264

    Google Scholar 

  • Mladenov N, Pulido-Villena E, Morales-Baquero R, Ortega-Retuerta E, Sommaruga R, Reche I. 2008. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity. J Geophys Res, 113: G00D01

    Google Scholar 

  • Molot L A, Dillon P J. 1996. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Glob Biochem Cy, 10: 483–492

    Google Scholar 

  • Monteith D T, Stoddard J L, Evans C D, de Wit H A, Forsius M, Høgåsen T, Wilander A, Skjelkvåle B L, Jeffries D S, Vuorenmaa J, Keller B, Kopácek J, Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450: 537–540

    Google Scholar 

  • Moore T R. 1988. Dissolved iron and organic matter in northern peatlands. Soil Sci, 145: 70–76

    Google Scholar 

  • Moore T R. 1997. Dissolved organic carbon: Sources, sinks, and fluxes and role in the soil carbon cycle. In: Lal R, Kimble J M, Follett R F, Stewart B A, eds. Soil Processes and the Carbon Cycle. Boca Raton: CRC Press. 281–292

  • Moore T R, Roulet N T, Waddington J M. 1998. Uncdertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim Change, 40: 229–245

    Google Scholar 

  • Mu C C, Abbott B W, Wu X D, Zhao Q, Wang H J, Su H, Wang S F, Gao T G, Guo H, Peng X Q, Zhang T J. 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the Northern Qinghai-Tibetan Plateau. Geophys Res Lett, 44: 9389–9399

    Google Scholar 

  • Mu C, Zhang T, Wu Q, Peng X, Cao B, Zhang X, Cao B, Cheng G. 2015. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 9: 479–486

    Google Scholar 

  • Mu C, Zhang T, Wu Q, Peng X, Zhang P, Yang Y, Hou Y, Zhang X, Cheng G. 2016. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau. J Limnol, 75: 313–319

    Google Scholar 

  • Neff J C, Asner G P. 2001. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model. Ecosystems, 4: 29–48

    Google Scholar 

  • Neff J C, Finlay J C, Zimov S A, Davydov S P, Carrasco J J, Schuur E A G, Davydova A I. 2006. Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett, 33: L23401

    Google Scholar 

  • O′Donnell J A, Aiken G R, Swanson D K, Panda S, Butler K D, Baltensperger A P. 2016. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Global Biogeochem Cy, 30: 1811–1826

    Google Scholar 

  • O′Donnell J A, Aiken G R, Walvoord M A, Butler K D. 2012. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge. Global Biogeochem Cy, 26: GB0E06

    Google Scholar 

  • Olefeldt D, Roulet N T. 2012. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J Geophys Res, 117: G01005

    Google Scholar 

  • Olefeldt D, Roulet N T. 2014. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Global Change Biol, 20: 3122–3136

    Google Scholar 

  • Parker S R, Poulson S R, Smith M G, Weyer C L, Bates K M. 2010. Temporal variability in the concentration and stable carbon isotope composition of dissolved inorganic and organic carbon in two Montana, USA Rivers. Aquat Geochem, 16: 61–84

    Google Scholar 

  • Parker B R, Vinebrooke R D, Schindler D W. 2008. Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci USA, 105: 12927–12931

    Google Scholar 

  • Permafrost Subcommittee. 1988. Glossary of permafrost and related ground-ice terms. Ottawa: National Research Council of Canada

    Google Scholar 

  • Peterson B J, Hobbie J E, Corliss T L. 1986. Carbon flow in a tundra stream ecosystem. Can J Fish Aquat Sci, 43: 1259–1270

    Google Scholar 

  • Petrone K C, Hinzman L D, Shibata H, Jones J B, Boone R D. 2007. The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol Process, 21: 423–434

    Google Scholar 

  • Petrone K C, Jones J B, Hinzman L D, Boone R D. 2006. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res, 111: G02020

    Google Scholar 

  • Prokushkin A S, Gleixner G, McDowell W H, Ruehlow S, Schulze E D. 2007. Source-and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia. Global Biogeochem Cy, 21: GB4003

    Google Scholar 

  • Prokushkin A S, Hobara S, Prokushkin S G. 2010. Behavior of dissolved organic carbon in larch ecosystems. In: Osawa A, Zyryanova O A, Matsuura Y, Kajimoto T, Wein R W, eds. Permafrost Ecosystems Siberian Larch Forests. Springer. 205–228

  • Prokushkin A S, Kawahigashi M, Tokareva I V. 2009. Global warming and dissolved organic carbon release from permafrost soils. In: Margesin R, ed. Permafrost Soils. Berlin: Springer-Verlag. 237–250

  • Prokushkin A S, Pokrovsky O S, Shirokova L S, Korets M A, Viers J, Prokushkin S G, Amon R M W, Guggenberger G, McDowell W H. 2011. Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau. Environ Res Lett, 6: 045212

    Google Scholar 

  • Prokushkin A S, Prokushkin S G, Shibata H, Matsuura Y, Abaimov A P. 2001. Dissolved organic carbon in coniferous forests of Central Siberia. Eur J Forest Res, 2: 45–58

    Google Scholar 

  • Qu B, Sillanpää M, Li C, Kang S, Stubbins A, Yan F, Aho K S, Zhou F, Raymond P A. 2017. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS ONE, 12: e0178166

    Google Scholar 

  • Raymond P A, McClelland J W, Holmes R M, Zhulidov A V, Mull K, Peterson B J, Striegl R G, Aiken G R, Gurtovaya T Y. 2007. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochem Cy, 21: GB4011

    Google Scholar 

  • Rodríguez-Jeangros N. 2018. Development of a high-resolution land cover product of the Rocky Mountain with application to carbon concentration in its streams: Assessing anthropgenic, climatological, and morphological contributions. Dorctoral Dissertation. Colorado: Colorado School of Mines

    Google Scholar 

  • Schindler D W, Curtis P J, Bayley S E, Parker B R, Beaty K G, Stainton M P. 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry, 36: 9–28

    Google Scholar 

  • Schuur E A G, Abbott B W, Bowden W B, Brovkin V, Camill P, Canadell J G, Chanton J P, Chapin F S, Christensen T R, Ciais P, Crosby B T, Czimczik C I, Grosse G, Harden J, Hayes D J, Hugelius G, Jastrow J D, Jones J B, Kleinen T, Koven C D, Krinner G, Kuhry P, Lawrence D M, McGuire A D, Natali S M, O’Donnell J A, Ping C L, Riley W J, Rinke A, Romanovsky V E, Sannel A B K, Schädel C, Schaefer K, Sky J, Subin Z M, Tarnocai C, Turetsky M R, Waldrop M P, Walter Anthony K M, Wickland K P, Wilson C J, Zimov S A. 2013. Expert assessment of vulnerability of permafrost carbon to climate change. Clim Change, 119: 359–374

    Google Scholar 

  • Selvam B P, Lapierre J F, Guillemette F, Voigt C, Lamprecht R E, Biasi C, Christensen T R, Martikainen P J, Berggren M. 2017. Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Sci Rep, 7: 45811

    Google Scholar 

  • Shirokova L S, Pokrovsky O S, Kirpotin S N, Desmukh C, Pokrovsky B G, Audry S, Viers J. 2013. Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry, 113: 573–593

    Google Scholar 

  • Skopintsev B A. 1979. Organic matter. In: Mordukhai-Boltovskoi D D, ed. The River Volga and its Life. The Hague: Dr W Junk. 95–105

    Google Scholar 

  • Smith P, Smith J, Flynn H, Killham K, Rangel-Castro I, Foereid B, Aitkenhead M, Chapman S, Towers W, Bell J, Lumsdon D, Milne R, Thomson A, Simmons I, Skiba U, Reynolds B, Evans C, Frogbrook Z, Bradley I, Whitmore A, Falloon P. 2007. ECOSSE: Estimating Carbon in Organic Soils-sequestration and Emissions. Edinburgh: Scottish Executive. 27–34

    Google Scholar 

  • Sommaruga R, Psenner R, Schafferer E, Koinig K A, Sommaruga-Wögrath S. 1999. Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: Potential effect of climatic warming on UV underwater attenuation. Arct Antarct Alp Res, 31: 247–253

    Google Scholar 

  • Spencer R G M, Mann P J, Dittmar T, Eglinton T I, McIntyre C, Holmes R M, Zimov N, Stubbins A. 2015. Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett, 42: 2830–2835

    Google Scholar 

  • Strack M, Waddington J M, Bourbonniere R A, Buckton E L, Shaw K, Whittington P, Price J S. 2008. Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol Process, 22: 3373–3385

    Google Scholar 

  • Striegl R G, Aiken G R, Dornblaser M M, Raymond P A, Wickland K P. 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett, 32: L21413

    Google Scholar 

  • Stubbins A, Mann P J, Powers L, Bittar T B, Dittmar T, McIntyre C P, Eglinton T I, Zimov N, Spencer R G M. 2017. Low photolability of yedoma permafrost dissolved organic carbon. J Geophys Res-Biogeosci, 122: 200–211

    Google Scholar 

  • Sturm M, Racine C, Tape K. 2001. Increasing shrub abundance in the Arctic. Nature, 411: 546–547

    Google Scholar 

  • Sun H G, Han J T, Li D W, Lu X X, Zhang H B, Zhao W. 2017. Organic carbon transport in the Songhua River, NE China: Influence of land use. Hydrol Process, 31: 2062–2075

    Google Scholar 

  • Tank S E, Striegl R G, McClelland J W, Kokelj S V. 2016. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environ Res Lett, 11: 054015

    Google Scholar 

  • Tanski G, Couture N, Lantuit H, Eulenburg A, Fritz M. 2016. Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean. Global Biogeochem Cy, 30: 1054–1068

    Google Scholar 

  • Tate C M, Meyer J L. 1983. The influence of hydrologic conditions and successional state on dissolved organic carbon export from forested watersheds. Ecology, 64: 25–32

    Google Scholar 

  • Thies H, Nickus U, Psenner R. 1998. Response of discharge and water quality in headwater brooks on distinct hydroclimatic conditions in the Tyrolean Alps. In: Proceedings of the HeadWater’98 Conference. Meran/Merano: IAHS Publications. 491–500

    Google Scholar 

  • Thompson M S, Giesler R, Karlsson J, Klaminder J. 2015. Size and characteristics of the DOC pool in near-surface subarctic mire permafrost as a potential source for nearby freshwaters. Arct Antarct Alp Res, 47: 49–58

    Google Scholar 

  • Thurman E M. 1985. Organic Geochemistry of Natural Waters. Dordrecht, the Netherlands: Springer. 5–70

    Google Scholar 

  • Tokareva I V, Prokushkin S G, Prokushkin A S. 2006. Water-soluble organic carbon on a forested watershed underlain by continuous permafrost and its export to stream. For Sci Tech, 2: 92–101

    Google Scholar 

  • Vonk J E, Mann P J, Davydov S, Davydova A, Spencer R G M, Schade J, Sobczak W V, Zimov N, Zimov S, Bulygina E, Eglinton T I, Holmes R M. 2013a. High biolability of ancient permafrost carbon upon thaw. Geophys Res Lett, 40: 2689–2693

    Google Scholar 

  • Vonk J E, Mann P J, Dowdy K L, Davydova A, Davydov S P, Zimov N, Spencer R G M, Bulygina E B, Eglinton T I, Holmes R M. 2013b. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environ Res Lett, 8: 035023

    Google Scholar 

  • Vonk J E, Tank S E, Mann P J, Spencer R G M, Treat C C, Striegl R G, Abbott B W, Wickland K P. 2015. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: A meta-analysis. Biogeosciences, 12: 6915–6930

    Google Scholar 

  • Walvoord M A, Striegl R G. 2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett, 34: L12402

    Google Scholar 

  • Ward C P, Cory R M. 2016. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils. Environ Sci Technol, 50: 3545–3553

    Google Scholar 

  • Wang S, Sun Z Y, Hu Y L, Ge M Y, Chang Q X. 2017. Intra-annual variation of dissolved organic carbon export through stream from an typical alpine catchment in Qinghai-Tibet Plateau: Patterns and hydrological controls (in Chinese). Safety Environ Eng, 24: 1–15

    Google Scholar 

  • White D, Autier V, Yoshikawa K, Jones J, Seelen S. 2008. Using DOC to better understand local hydrology in a subarctic watershed. Cold Regions Sci Tech, 51: 68–75

    Google Scholar 

  • White W M. 2013. Geochemistry. Hoboken: John Wiley & Sons. 210

    Google Scholar 

  • Wickland K P, Waldrop M P, Aiken G R, Koch J C, Torre Jorgenson M, Striegl R G. 2018. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ Res Lett, 13: 065011

    Google Scholar 

  • Worrall F, Burt T. 2005. Predicting the future DOC flux from upland peat catchments. J Hydrol, 300: 126–139

    Google Scholar 

  • Xenopoulos M A, Lodge D M, Frentress J, Kreps T A, Bridgham S D, Grossman E, Jackson C J. 2003. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr, 48: 2321–2334

    Google Scholar 

  • Yu X, Zhang Y, Zhao H, Lu X, Wang G. 2010. Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils. Chin Geogr Sci, 20: 209–217

    Google Scholar 

  • Yurova A, Sirin A, Buffam I, Bishop K, Laudon H. 2008. Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: Importance of representing sorption. Water Resour Res, 44: W07411

    Google Scholar 

  • Zhu D, Wu N, Chen H, Zhu Q’, Wu Y, Zhang Y. 2014. Spatial pattern of dissolved organic carbon and its specific ultraviolet absorbance under different scales in a wetland complex on the eastern Tibetan Plateau. Ekoloji, 23: 16–21

    Google Scholar 

  • Zimov S A, Schuur E A G, Chapin F S. 2006. Permafrost and the global carbon budget. Science, 312: 1612–1613

    Google Scholar 

Download references

Acknowledgements

The authors also would like to express the sincere gratitude to the two unidentified reviewers for their generous efforts in reviewing and improving the manuscript. This work was financially supported by the National Natural Science Foundation of China (Grant No. 41472229), the Chinese Academy of Sciences (CAS) Strategic Priority Research Program (Grant No. XDA20100103), and the CAS Key Research Program of Frontier Sciences (Grant No. QYZDY-SSW-DQC021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huijun Jin or Victor F. Bense.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Jin, H., Yu, C. et al. Dissolved organic carbon in permafrost regions: A review. Sci. China Earth Sci. 62, 349–364 (2019). https://doi.org/10.1007/s11430-018-9309-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9309-6

Keywords

Navigation