Skip to main content
Log in

Hydrologic implications of the isotopic kinetic fractionation of open-water evaporation

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The kinetic fractionation of open-water evaporation against the stable water isotope H218O is an important mechanism underlying many hydrologic studies that use 18O as an isotopic tracer. A recent in-situ measurement of the isotopic water vapor flux over a lake indicates that the kinetic effect is much weaker (kinetic factor 6.2‰) than assumed previously (kinetic factor 14.2‰) by lake isotopic budget studies. This study investigates the implications of the weak kinetic effect for studies of deuterium excess-humidity relationships, regional moisture recycling, and global evapotranspiration partitioning. The results indicate that the low kinetic factor is consistent with the deuterium excess-humidity relationships observed over open oceans. The moisture recycling rate in the Great Lakes region derived from the isotopic tracer method with the low kinetic factor is a much better agreement with those from atmospheric modeling studies than if the default kinetic factor of 14.2‰ is used. The ratio of transpiration to evapotranspiration at global scale decreases from 84±9% (with the default kinetic factor) to 76±19% (with the low kinetic factor), the latter of which is in slightly better agreement with other non-isotopic partitioning results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benetti M, Reverdin G, Pierre C, Merlivat L, Risi C, Steen–Larsen H C, Vimeux F. 2014. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J Geophys Res–Atmos, 119: 584–593

    Google Scholar 

  • Bowen G J, Kennedy C D, Henne P D, Zhang T. 2012. Footprint of recycled water subsidies downwind of Lake Michigan. Ecosphere, 3: art53

    Article  Google Scholar 

  • Bryan A M, Steiner A L, Posselt D J. 2015. Regional modeling of surface-atmosphere interactions and their impact on Great Lakes hydroclimate. J Geophys Res–Atmos, 120: 1044–1064

    Article  Google Scholar 

  • Cappa C D, Hendricks M B, Depaolo D J, Cohen R C. 2003. Isotopic fractionation of water during evaporation. J Geophys Res, 108: 4525

    Article  Google Scholar 

  • Coenders–Gerrits A M J, van der Ent R J, Bogaard T A, Wang–Erlandsson L, Hrachowitz M, Savenije H H G. 2014. Uncertainties in transpiration estimates. Nature, 506: E1–E2

    Article  Google Scholar 

  • Collins W J, Bellouin N, Doutriaux–Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C D, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S. 2011. Development and evaluation of an Earth–System model–HadGEM2. Geosci Model Dev, 4: 1051–1075

    Article  Google Scholar 

  • Craig H, Gordon L I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Stable isotopes in oceanographic studies and paleotemperatures, 26–30 July 1965, Spoleto

    Google Scholar 

  • Dai A, Trenberth K E. 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J Hydrometeorol, 3: 660–687

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge–Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA–Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597

    Article  Google Scholar 

  • Dee S, Noone D, Buenning N, Emile–Geay J, Zhou Y. 2015. SPEEDY–IER: A fast atmospheric GCM with water isotope physics. J Geophys Res–Atmos, 120: 73–91

    Google Scholar 

  • Dirmeyer P A, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N. 2006. GSWP–2: Multimodel analysis and implications for our perception of the land surface. Bull Amer Meteorol Soc, 87: 1381–1398

    Article  Google Scholar 

  • Dunne J P, John J G, Adcroft A J, Griffies S M, Hallberg R W, Shevliakova E, Stouffer R J, Cooke W, Dunne K A, Harrison M J, Krasting J P, Malyshev S L, Milly P C D, Phillipps P J, Sentman L T, Samuels B L, Spelman M J, Winton M, Wittenberg A T, Zadeh N. 2012. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J Clim, 25: 6646–6665

    Google Scholar 

  • Dunne J P, John J G, Shevliakova E, Stouffer R J, Krasting J P, Malyshev S L, Milly P C D, Sentman L T, Adcroft A J, Cooke W, Dunne K A, Griffies S M, Hallberg R W, Harrison M J, Levy H, Wittenberg A T, Phillips P J, Zadeh N. 2013. GFDL’s ESM2 global coupled climatecarbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J Clim, 26: 2247–2267

    Google Scholar 

  • Farquhar G D, Lloyd J. 1993. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plant and the atmosphere. In: Saugier B, Ehleringer J R, Hall A E, Farquhar G D, eds. Stable Isotopes and Plant Carbon–Water Relations. San Diego: Academic. 47–70

  • Fatichi S, Pappas C. 2017. Constrained variability of modeled T:ET ratio across biomes. Geophys Res Lett, 44: 6795–6803

    Article  Google Scholar 

  • Gat J R, Bowser C J, Kendall C. 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data. Geophys Res Lett, 21: 557–560

    Article  Google Scholar 

  • Gat J R, Klein B, Kushnir Y, Roether W, Wernli H, Yam R, Shemesh A. 2003. Isotope composition of air moisture over the Mediterranean Sea: An index of the air–sea interaction pattern. Tellus B, 55: 953–965

    Article  Google Scholar 

  • Gibson J J, Birks S J, Jeffries D, Yi Y. 2017. Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys. J Hydrol, 544: 500–510

    Article  Google Scholar 

  • Gibson J J, Birks S J, Yi Y. 2016. Stable isotope mass balance of lakes: A contemporary perspective. Quat Sci Rev, 131: 316–328

    Article  Google Scholar 

  • Gibson J J, Reid R. 2010. Stable isotope fingerprint of open–water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed. J Hydrol, 381: 142–150

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Güttler I, O’Brien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C. 2012. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim Res, 52: 7–29

    Article  Google Scholar 

  • Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry. Vol 2: The Terrestrial Environment. Amsterdam: Elsevier. 113–163

  • Good S P, Noone D, Bowen G. 2015. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349: 175–177

    Article  Google Scholar 

  • Jasechko S, Sharp Z D, Gibson J J, Birks S J, Yi Y, Fawcett P J. 2013. Terrestrial water fluxes dominated by transpiration. Nature, 496: 347–350

    Article  Google Scholar 

  • Jasechko S, Gibson J J, Edwards T W D. 2014. Stable isotope mass balance of the Laurentian Great Lakes. J Great Lakes Res, 40: 336–346

    Article  Google Scholar 

  • Jouzel J, Koster R D. 1996. A reconsideration of the initial conditions used for stable water isotope models. J Geophys Res, 101: 22933–22938

    Article  Google Scholar 

  • Jouzel J, Masson–Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. 2007. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 317: 793–796

    Article  Google Scholar 

  • Kabeya N, Kubota T, Shimizu A, Nobuhiro T, Tsuboyama Y, Chann S, Tith N. 2008. Isotopic investigation of river water mixing around the confluence of the Tonle Sap and Mekong rivers. Hydrol Process, 22: 1351–1358

    Article  Google Scholar 

  • Kool D, Agam N, Lazarovitch N, Heitman J L, Sauer T J, Ben–Gal A. 2014. A review of approaches for evapotranspiration partitioning. Agric For Meteorol, 184: 56–70

    Article  Google Scholar 

  • Lawrence D M, Thornton P E, Oleson K W, Bonan G B. 2007. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J Hydrometeorol, 8: 862–880

    Article  Google Scholar 

  • Lawrence D M, Oleson K W, Flanner M G, Thornton P E, Swenson S C, Lawrence P J, Zeng X, Yang Z L, Levis S, Sakaguchi K, Bonan G B, Slater A G. 2011. Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst, 3: M03001

    Google Scholar 

  • Lee X, Griffis T J, Baker J M, Billmark K A, Kim K, Welp L R. 2009. Canopy–scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Glob Biogeochem Cycle, 23: GB1002

    Article  Google Scholar 

  • Machavaram M V, Krishnamurthy R V. 1995. Earth surface evaporative process: A case study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochim Cosmochim Acta, 59: 4279–4283

    Article  Google Scholar 

  • Majoube M. 1971. Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. J Chim Phys, 68: 1423–1436

    Article  Google Scholar 

  • Martin G M, Bellouin N, Collins W J, Culverwell I D, Halloran P R, Hardiman S C, Hinton T J, Jones C D, McDonald R E, McLaren A J, O′ Connor F M, Roberts M J, Rodriguez J M, Woodward S, Best M J, Brooks M E, Brown A R, Butchart N, Dearden C, Derbyshire S H, Dharssi I, Doutriaux–Boucher M, Edwards J M, Falloon P D, Gedney N, Gray L J, Hewitt H T, Hobson M, Huddleston M R, Hughes J, Ineson S, Ingram W J, James P M, Johns T C, Johnson C E, Jones A, Jones C P, Joshi M M, Keen A B, Liddicoat S, Lock A P, Maidens A V, Manners J C, Milton S F, Rae J G L, Ridley J K, Sellar A, Senior C A, Totterdell I J, Verhoef A, Vidale P L, Wiltshire A. 2011. The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev, 4: 723–757

    Article  Google Scholar 

  • Maxwell R M, Condon L E. 2016. Connections between groundwater flow and transpiration partitioning. Science, 353: 377–380

    Article  Google Scholar 

  • Merlivat L. 1978. Molecular diffusivities of H2 16O, HD16O, and H2 18O in gases. J Chem Phys, 69: 2864–2871

    Article  Google Scholar 

  • Merlivat L, Jouzel J. 1979. Global climatic interpretation of the deuteriumoxygen 18 relationship for precipitation. J Geophys Res, 84: 5029–5033

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran P C, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery E H, Ek M B, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. Bull Amer Meteorol Soc, 87: 343–360

    Article  Google Scholar 

  • Miralles D G, de Jeu R A M, Gash J H, Holmes T R H, Dolman A J. 2011. Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci, 15: 967–981

    Article  Google Scholar 

  • Miralles D G, Gash J H, Holmes T R H, de Jeu R A M, Dolman A J. 2010. Global canopy interception from satellite observations. J Geophys Res, 115: D16122

    Article  Google Scholar 

  • Miralles D G, Jiménez C, Jung M, Michel D, Ershadi A, McCabe M F, Hirschi M, Martens B, Dolman A J, Fisher J B, Mu Q, Seneviratne S I, Wood E F, Fernández–Prieto D. 2016. The WACMOS–ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol Earth Syst Sci, 20: 823–842

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I. 2002. A high–resolution data set of surface climate over global land areas. Clim Res, 21: 1–25

    Article  Google Scholar 

  • Pfahl S, Wernli H. 2008. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J Geophys Res, 113: D20104

    Article  Google Scholar 

  • Risi C, Bony S, Vimeux F, Jouzel J. 2010. Water–stable isotopes in the LMDZ4 general circulation model: Model evaluation for present–day and past climates and applications to climatic interpretations of tropical isotopic records. J Geophys Res, 115: D12118

    Article  Google Scholar 

  • Rozanski K, Araguas–Araguas L, Gonfiantini R. 1993. Isotopic patterns in modern global precipitation. In: Swart P K, Lohmann K C, McKenzie J, Savin S, eds. Climate Change in Continental Isotopic Records. American Geophysical Union. 36

  • Schlaepfer D R, Ewers B E, Shuman B N, Williams D G, Frank J M, Massman W J, Lauenroth W K. 2014. Terrestrial water fluxes dominated by transpiration: Comment. Ecosphere, 5: 1–9

    Article  Google Scholar 

  • Schlesinger W H, Jasechko S. 2014. Transpiration in the global water cycle. Agric For Meteorol, 189–190: 115–117

    Google Scholar 

  • Skrzypek G, Mydłowski A, Dogramaci S, Hedley P, Gibson J J, Grierson P F. 2015. Estimation of evaporative loss based on the stable isotope composition of water using hydrocalculator. J Hydrol, 523: 781–789

    Article  Google Scholar 

  • Steen–Larsen H C, Sveinbjörnsdottir A E, Jonsson T, Ritter F, Bonne J L, Masson–Delmotte V, Sodemann H, Blunier T, Dahl–Jensen D, Vinther B M. 2015. Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. J Geophys Res–Atmos, 120: 5757–5774

    Google Scholar 

  • Steen–Larsen H C, Sveinbjörnsdottir A E, Peters A J, Masson–Delmotte V, Guishard M P, Hsiao G, Jouzel J, Noone D, Warren J K, White J W C. 2014. Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements. Atmos Chem Phys, 14: 7741–7756

    Article  Google Scholar 

  • Steffensen J P, Andersen K K, Bigler M, Clausen H B, Dahl–Jensen D, Fischer H, Goto–Azuma K, Hansson M, Johnsen S J, Jouzel J, Masson–Delmotte V, Popp T, Rasmussen S O, Röthlisberger R, Ruth U, Stauffer B, Siggaard–Andersen M L, Sveinbjörnsdóttir A E, Svensson A, White J W C. 2008. High–resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321: 680–684

    Article  Google Scholar 

  • Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res, 113: D19114

    Article  Google Scholar 

  • Wang L X, Good S P, Caylor K K. 2014. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys Res Lett, 41: 6753–6757

    Article  Google Scholar 

  • Wang K, Dickinson R E. 2012. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev Geophys, 50: RG2005

    Article  Google Scholar 

  • Wang–Erlandsson L, van der Ent R J, Gordon L J, Savenije H H G. 2014. Contrasting roles of interception and transpiration in the hydrological cycle—Part 1: Temporal characteristics over land. Earth Syst Dynam, 5: 441–469

    Article  Google Scholar 

  • Wassenaar L I, Athanasopoulos P, Hendry M J. 2011. Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. J Hydrol, 411: 37–48

    Article  Google Scholar 

  • Wei Z, Yoshimura K, Wang L, Miralles D G, Jasechko S, Lee X. 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys Res Lett, 44: 2792–2801

    Article  Google Scholar 

  • Werner M, Haese B, Xu X, Zhang X, Butzin M, Lohmann G. 2016. Glacial–interglacial changes in H2 18O, HDO and deuterium excess—Results from the fully coupled ECHAM5/MPI–OM Earth system model. Geosci Model Dev, 9: 647–670

    Article  Google Scholar 

  • Werner M, Langebroek P M, Carlsen T, Herold M, Lohmann G. 2011. Stable water isotopes in the ECHAM5 general circulation model: Toward high–resolution isotope modeling on a global scale. J Geophys Res, 116: D15109

    Article  Google Scholar 

  • Xiao W, Lee X, Hu Y, Liu S, Wang W, Wen X, Werner M, Xie C. 2017. An experimental investigation of kinetic fractionation of open–water evaporation over a large lake. J Geophys Res–Atmos, 122: 11651–11663

    Google Scholar 

  • Yoshimura K, Miyazaki S, Kanae S, Oki T. 2006. Iso–MATSIRO, a land surface model that incorporates stable water isotopes. Glob Planet Change, 51: 90–107

    Article  Google Scholar 

  • Yi Y, Brock B E, Falcone M D, Wolfe B B, Edwards T W D. 2008. A coupled isotope tracer method to characterize input water to lakes. J Hydrol, 350: 1–13

    Article  Google Scholar 

  • Zhang Y, Peña–Arancibia J L, McVicar T R, Chiew F H S, Vaze J, Liu C, Lu X, Zheng H, Wang Y, Liu Y Y, Miralles D G, Pan M. 2016. Multidecadal trends in global terrestrial evapotranspiration and its components. Sci Rep, 6: 19124

    Article  Google Scholar 

  • Zhou S, Yu B, Zhang Y, Huang Y, Wang G. 2016. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resour Res, 52: 1160–1175

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41475141, 41830860, 41575147 & 41505005), the National Key Research and Development Program of China (Grant No. 2016YFC0500102), the U. S. National Science Foundation (Grant No. 1520684), the Science and Technology Department of Ningxia (Grant No. 2015KJHM34), the China Special Fund for Meteorological Research in the Public Interest (Major projects, Grant No. GYHY201506001-6), the NUIST Scientific Foundation (Grant No. KLME1415), the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD), and the Ministry of Education of the People’s Republic of China (Grant No. PCSIRT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xiao or Xuhui Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Qian, Y., Lee, X. et al. Hydrologic implications of the isotopic kinetic fractionation of open-water evaporation. Sci. China Earth Sci. 61, 1523–1532 (2018). https://doi.org/10.1007/s11430-018-9246-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9246-9

Keywords

Navigation