Skip to main content

Isotope Fractionation and HCl Partitioning During Evaporative Degassing from Active Crater Lakes

  • Chapter
  • First Online:
Volcanic Lakes

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

This chapter provides the theoretical background and necessary practical tools to study one of the most spectacular natural features: vigorous evaporation from active crater lakes. We will give qualitative insights (lake water chemical—Cl content, and isotopic composition) rather than quantify evaporation fluxes from lakes. A major problem is that, with the current methods, we are only able to sample the lake water, while the input fluid rising into the lake (sublacustrine) and evaporation plume coming off the lake remain “inaccessible”. This means that the lake behaves as a “black box”, being the result of incoming and outgoing fluids of unknown chemical and isotopic composition. As visually demonstrated at many active crater lakes, evaporation is a major process. Strong evaporation from the lake surface will affect the isotopic composition of the remnant lake water, and the “steam devils” (evaporation plume) swirling over the lake. It is found that the kinetic (diffusion) isotope fractionation overshadows the equilibrium isotope fractionation effect, as a dynamic crater lake is intuitively hard to imagine as an equilibrated system. Besides a hot water mass in evaporation, water of active crater lakes is generally a hyper-saline (total salinity >100,000 mg l−1) and hyper-acidic brine (pH as low as −0.5). Although “small scale” equilibrium fractionation effects, the “isotope salt effect” and “isotope acid effect” lead to isotopically heavier evaporation plumes, with respect to vapor coming off pure neutral water. Besides isotope fractionation of the water itself under such extreme lake conditions, HClgas (and HF) will partition between the liquid and vapor phases. HCl degassing is enhanced when pH is continuously lowered by the input of acidic gases (SO2, HCl, HF), lake temperature is higher, and evaporation is physically favored by wind or lake convection. It is empirically deduced that HCl partitioning into the vapor phase is chemically controlled by the lake water temperature and density, rather than the Cl content or pH. A better quantification of the chemical and isotopic composition of evaporative gas plumes from active crater lakes will be of importance for volcano monitoring when we aim to deduce the flux and composition of the “hot magmatic end member”, through chemical and isotope budget analyses. A major challenge for the future is to develop field methods to enable to sample the evaporation plume coming off lake surfaces, so we can directly determine its chemical and isotopic composition and compare them with the theoretical approach presented in this review chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MC (1996) Chemistry of fluids from ascension n1, a deep geothermal well on ascension island, South Atlantic ocean. Geothermics 25:561–579

    Article  Google Scholar 

  • Adams E, Cosler DJ, Helfrich KR (1990) Evaporation from heated water bodies: predicting combined forced plus free convection. Water Resour Res 26:425–435

    Article  Google Scholar 

  • Agusto M (2011) Estudio geoquímico de los fluidos volcánicos e hidrotermales del Complejo Volcánica Copahue-Caviahue y su aplicación para tareas de seguimiento. PhD dissertation. Universidad de Buenos Aires, Argentina, pp 294

    Google Scholar 

  • Aiuppa A, Federico C, Paonita A, Pecoraino G, Valenza M (2002) S, Cl and F degassing as an indicator of volcanic dynamics: the 2001 eruption of Mount Etna. Geophys Res Lett 29(11):1559. doi:10.1029/2002GL015032

    Article  Google Scholar 

  • Barkan E, Luz B (2005) High precision measurements of 17O/16O and 18O/16O of O2 in H2O. Rapid Commun Mass Spectrom 19:3737–3742

    Article  Google Scholar 

  • Bigeleisen J (1961) Statistical mechanics of isotope effects on the thermodynamic properties of condensed systems. J Chem Phys 34:1485–1493

    Article  Google Scholar 

  • Bopp P, Heinzinger K, Klemm A (1977) Oxygen isotopefractionation and the structure of aqueous alkali halide solutions. Z Naturforsch 324:1419–1425

    Google Scholar 

  • Brantley SL, Borgia A, Rowe G, Fernández JF, Reynolds JR (1987) Poás volcano crater lake acts as a condenser for acid metal-rich brine. Nature 330:470–472

    Article  Google Scholar 

  • Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339:370–373

    Article  Google Scholar 

  • Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. J Geophys Res 108(D16):4525. doi:10.1029/2003JD003597

    Article  Google Scholar 

  • Casadevall TJ, De la Cruz-Reyna S, Rose Jr WI, Bagley S, Finnegan DL, Zoller WH (1984) Crater lake and post-eruption hydrothermal activity, El Chichon volcano, Mexico. J Volcanol Geotherm Res 23:169–191

    Google Scholar 

  • Chiba H, Sakai S (1985) Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochim Cosmochim Acta 43:993–1000

    Article  Google Scholar 

  • Christenson BW, Wood CP (1993) Evolution of the vent-hosted hydrothermal system beneath Ruapehu crater lake, New Zealand. Bull Volcanol 55:547–565

    Article  Google Scholar 

  • Craig H (1963) The isotopic geochemistry of water and carbon in geothermal areas. In: Tongiorgio (ed) Nuclear geology in geothermal areas, conference proceedings (Spoleto, Italy), pp 17–53

    Google Scholar 

  • Craig H, Gordon LI (1965) Stable isotope in oceanographic studies and paleotemperatures. V Lischi e Figli, Pisa, pp 122

    Google Scholar 

  • Craig H, Gordon LI, Horibe Y (1963) Isotopic exchange effects in the evaporation of water. J Geophys Res 68:5079–5087

    Article  Google Scholar 

  • Deines P (1979) A note on hydrogen isotope fractionation involving acidic and basic solutions. Geochim Cosmochim Acta 43:1575–1577

    Article  Google Scholar 

  • Delmelle P, Bernard A (2015) The remarkable chemistry of sulfur in volcanic acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe. In: Rouwet D, Tassi F, Vandemeulebrouck J, Christenson B (eds) Volcanic Lakes. Springer, Berlin. doi: 10.1007/978-3-642-36833-2_10

  • Delmelle P, Bernard A (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen volcano, Indonesia. Geochim Cosmochim Acta 58:2445–2460

    Article  Google Scholar 

  • Delmelle P, Kusakabe M, Bernard A, Fischer T, de Brouwer S, del Mundo E (1998) Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines. Bull Volcanol 59:562–576

    Article  Google Scholar 

  • Delmelle P, Bernard A, Kusakabe M, Fischer TP, Takano B (2000) Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geotherm Res 97:31–53

    Article  Google Scholar 

  • Di Napoli R, Aiuppa A, Allard P (2013) First Multi-GAS based characterization of the Boiling Lake volcanic gas (Dominica, lesser antilles). Ann Geophys 56(5):S0559. doi:10.4401/ag-6277

  • Driesner T, Seward TM (2000) Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquid-vapor fractionation for 4–5 molal aqueous NaCl and KCl solutions to 400 C. Geochim Cosmochim Acta 64(10):1773–1784

    Article  Google Scholar 

  • Feder HM, Taube H (1952) Ionic hydration: an isotopic fractionation technique. J Chem Phys 20:1335–1336

    Article  Google Scholar 

  • Federico C, Capasso G, Paonita A, Favara R (2010) Effects of steam-heating processes on a stratified volcanic aquifer: stable isotopes and dissolved gases in thermal waters of Volcano Island (Aeolian archipelago). J Volcanol Geotherm Res 192:178–190

    Article  Google Scholar 

  • Fournier N, Witham F, Moreau-Fournier M, Bardou L (2009) Boiling Lake of Dominica, West Indies: High-temperature volcanic crater lake dynamics. J Geophys Res 114:B02203. doi:10.1029/2008JB005773

    Google Scholar 

  • Fritz P, Frape SK (1982) Saline groundwaters in the Canadian Shield: a first overview. Chem Geol 36:179–190

    Article  Google Scholar 

  • Gat JR (1981) Paleoclimate conditions in theLevant as revealed by the isotopic compositionof paleowaters. Israel Meteorol Res Pap 3:13–28

    Google Scholar 

  • Gat J (2008) The isotopic composition of evaporating waters—review of the historical evolution leading up to the Craig-Gordon model. Isot Environ Health Stud 44:5–9

    Article  Google Scholar 

  • Giggenbach WF (1975) Variations in the carbon, sulphur and chlorine contents of volcanic gas discharges from White Island, New Zealand. Bull Volcanol 39:15–27

    Article  Google Scholar 

  • Giggenbach WF (1978) The isotopic composition of waters from the El Tatio geothermal field, Northern Chile. Geochim Cosmochim Acta 42:979–988

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Giggenbach WF (1992) Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ Geol 87:1927–1944

    Google Scholar 

  • Giggenbach WF, Glover RB (1975) The use of chemical indicators in the surveillance of volcanic activity affecting the crater lake on Mt Ruapehu, New Zealand. Bull Volcanol 39:70–81

    Article  Google Scholar 

  • Giggenbach WF, Stewart MK (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas. Geothermics 11:71–80

    Article  Google Scholar 

  • Goff F, McMurty GM, Roldan-Manzo A, Stimac JA, Werner C, Hilton D, van Soest MC (1995) Contrasting magma–hydrothermal activity at Sierra Negra and Aliedo volcanoes, Galapagos hot spot Ecuador. EOS Trans Am Geophys Union 76(46):F702 (Abstract)

    Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JCh (eds) Handbook of Environmental Isotope Geochemistry, vol 2., The Terrestrial Environment, Elsevier, Amsterdam, pp 113–168

    Google Scholar 

  • Götz D, Heinzinger K (1973) Sauerstoffisotopieeffekte undhydratstruktur von alkalihalogenid-lösungen in H2O und D2O2. Naturforschende 281:137–141

    Google Scholar 

  • Graham CM, Sheppard SMF (1980) Experimental hydrogen isotope studies, II. Fractionations in the systems epidote-NaCl-H20, epidote-CaCl2-H2O and epidote-seawater, and the hydrogen isotope composition of natural epidote. Earth Planet Sci Lett 48:237–251

    Article  Google Scholar 

  • Harbeck GE (1964) Estimated forced evaporation from cooling ponds: proceedings of the American Society of Civil Engineers. J Power Div 90(P03):1–9

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Henley RW (2015) Hyperacidic volcanic lakes, metal sinks and magmatic gas expansion in arc volcanoes. In: Rouwet D, Tassi F, Vandemeulebrouck J, Christenson B (eds) Volcanic Lakes. Springer, Berlin. doi: 10.1007/978-3-642-36833-2_6

  • Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim Cosmochim Acta 58:3425–3437

    Article  Google Scholar 

  • Horita J, Cole DR, Wesolowski DJ (1993a) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications. Geochim Cosmochim Acta 57:4703–4711

    Article  Google Scholar 

  • Horita J, Wesolowski DJ, Cole DR (1993b) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: I. Vapor-liquid water equilibration of single salt solutions from 50 to 100°C. Geochim Cosmochim Acta 57:2797–2817

    Article  Google Scholar 

  • Horita J, Cole DR, Wesolowski DJ (1995) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350°C. Geochim Cosmochim Acta 59(6):1139–1151

    Article  Google Scholar 

  • Horita J, Rozanski K, Cohen S (2008) Isotope effects in the evaporation of water: a status report of the Craig-Gordon model. Isot Environ Health Stud 44:23–49

    Article  Google Scholar 

  • Hunt JP, Taube H (1950) The exchange of water between aqueous chromic ion and solvent. J Chem Phys 18:757–758

    Article  Google Scholar 

  • Hunt JP, Taube H (1951) The exchange of water between hydrated cations and solvent. J J Chem Phys 19:602–609

    Article  Google Scholar 

  • Hurst AW, Hashimoto T, Terada A (2015) Crater lake energy and mass balance. In: Rouwet D, Tassi F, Vandemeulebrouck J, Christenson B (eds) Volcanic Lakes. Springer, Berlin. doi: 10.1007/978-3-642-36833-2_13

  • Hurst AW, Bibby HM, Scott BJ, McGuinness MJ (1991) The heat source of Ruapehu crater lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 6:1–21

    Article  Google Scholar 

  • Hurst T, Christenson B, Cole-Baker J (2012) Use of a weather buoy to derive improved heat and mass balance parameters for Ruapehu crater lake. J Volcanol Geotherm Res 235–236:23–28

    Article  Google Scholar 

  • Krabbenhoft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwaterexchange with lakes 1. The stable isotope mass balance method. Water Resour Res 26:2445–2453

    Google Scholar 

  • Lawrence JR, Geiskes JM, Broecker WS (1975) Oxygen isotopes and cation composition of DSDP pore waters and the alteration of layer II basalts. Earth Planet Sci Lett 27:1–10

    Article  Google Scholar 

  • Lee TM, Swancar A (1997) Influence of evaporation, ground water, and uncertainty in the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida. USGS Water-Supply Papers 2439:61 p

    Google Scholar 

  • Lloyd RM (1968) Oxygen isotope behavior in the sulfate–water system. J Geophys Res 73:6099–6110

    Article  Google Scholar 

  • Luz B, Barkan E, Yam R, Shemesh A (2009) Fractionation of oxygen and hydrogen isotopes in evaporating water. Geochim Cosmochim Acta 73:6697–6703

    Article  Google Scholar 

  • Majoube M (1971) Fractionnement en oxygene-18 et deuteriumentre l’eau et sa vapeur. J Chim Phys 197:1423–1436

    Google Scholar 

  • Martínez M, Fernández E, Valdés J, Barboza V, Van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and activity of the active crater lake of Poás volcano, Costa Rica, 1993–1997. J Volcanol Geotherm Res 97:127–141

    Article  Google Scholar 

  • Menyailov IA, Nikitina LP, Shapar VN, Pilipenko VP (1986) Temperature increase and chemical changes of fumarolic gases at Momotombo volcano, Nicaragua, in 1982–1985: are these indicators of a possible eruption? J Geophys Res 91:12199–12214

    Article  Google Scholar 

  • Mizutani Y, Rafter AT (1969) Oxygen isotopic fractionation in the bisulphate ion-water system. NZ J Sci 12:54–59

    Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258

    Article  Google Scholar 

  • O’Neil JR, Truesdell AH (1991) Oxygen isotope fractionation studies of solute-water interactions. In stable isotope geochemistry: a tribute to Samuel Epstein (ed HP Taylor Jr et al.) Geochem Sot, pp 17–25

    Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (1994) Water, heat and chloride budgets of the crater lake, Yugama at Kusatsu-Shirane volcano, Japan. Geochem J 28:217–231

    Article  Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2000) D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan. J Volcanol Geotherm Res 97:329–346

    Article  Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2008) Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane volcano, Japan: Implications for the evolution of the magmatic-hydrothermal system. J Volcanol Geotherm Res 178:131–144

    Article  Google Scholar 

  • Oppenheimer C (1997) Ramifications of the skin effect for crater lake heat budget analysis. J Volcanol Geotherm Res 75:159–165

    Article  Google Scholar 

  • Pasternack GB, Varekamp JC (1997) Volcanic lake systematics 1. Physical constraints. Bull Volcanol 58:528–538

    Article  Google Scholar 

  • Rouwet D, Tassi F (2011) Geochemical monitoring of volcanic lakes a generalized box model for active crater lake. Ann Geophys 54(2):161–173

    Google Scholar 

  • Rouwet D, Taran Y, Varley NR (2004) Dynamics and mass balance of El Chichón crater lake, Mexico. Geofís Int 43:427–434

    Google Scholar 

  • Rouwet D, Taran Y, Inguaggiato S, Varley N, Santiago SJA (2008) Hydrochemical dynamics of the lake-spring system in the crater of El Chichón volcano (Chiapas, Mexico). J Volcanol Geotherm Res 178:237–248

    Article  Google Scholar 

  • Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2013.12.009

  • Rowe GL (1994) Oxygen, hydrogen, and sulphur isotope systematics of the crater lake system of Poás Volcano, Costa Rica. Geochem J 28:264–275

    Google Scholar 

  • Rowe GL, Brantley SL, Fernández M, Fernández JF, Borgia A, Barquero J (1992a) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 64:233–267

    Article  Google Scholar 

  • Rowe GL, Ohsawa S, Takano B, Brantley SL, Fernández JF, Barquero J (1992b) Using crater lake chemistry to predict volcanic activity at Poás volcano, Costa Rica. Bull Volcanol 54:494–503

    Article  Google Scholar 

  • Ryan PJ, Harleman DRF, Stolzenbach KD (1974) Surface heat loss from cooling ponds. Water Resources Res 10:930–938

    Article  Google Scholar 

  • Sacks LA (2002) Estimating ground-water inflow to lakes in Central Florida using the isotope mass-balance approach. US Geological Survey. Water-resources investigations report 02-4192:68 pp

    Google Scholar 

  • Sartori E (2000) A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Sol Energy 68:77–89

    Article  Google Scholar 

  • Sharp ZD, Barnes JD, Fischer TP, Halick M (2010) An experimental determination of chlorine isotope fractionation in acid systems and applications to volcanic fumaroles. Geochim Cosmochim Acta 74:264–273

    Article  Google Scholar 

  • Shinohara H, Yoshikawa S, Miyabuchi Y (2015) Degassing activity of a volcanic crater lake: Volcanic plume measurements at the Yudamari crater lake, Aso volcano, Japan. In: Rouwet D, Tassi F, Vandemeulebrouck J, Christenson B (eds) Volcanic Lakes. Springer, Berlin. doi: 10.1007/978-3-642-36833-2_8

  • Shinohara H, Giggenbach WF, Kazahaya K, Hedenquist JW (1993) Geochemistry of volcanic gases and hot springs of Satsuma-Iwojima, Japan: Following Matsuo. Geochem J 27:271–285

    Article  Google Scholar 

  • Sill BL (1983) Free and forced convection effects on evaporation. J Hydraul Engin ASCE 109:1216–1231

    Article  Google Scholar 

  • Simonson JM, Palmer DA (1993) Liquid-vapor partitioning of HCl(aq) to 350 C. Geochim Cosmochim Acta 57:1–7

    Article  Google Scholar 

  • Sofer Z, Gat JR (1972) Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: Analytical andgeophysical implications. Earth Planet Sci Lett 15:232–238

    Article  Google Scholar 

  • Sriwana T, van Bergen MJ, Varekamp JC, Sumarti S, Takano B, van Os BJH, Leng MJ (2000) Geochemistry of the acid Kawah Putih lake, Patuha volcano, West Java, Indonesia. J Volcanol Geotherm Res 97:77–104

    Article  Google Scholar 

  • Stimac JA, Goff F, Counce D, Larocque ACL, Hilton DR, Morgenstern U (2004) The crater lake and hydrothermal system of Mount Pinatubo, Philippines: evolution in the decade after eruption. Bull Volcanol 66:149–167

    Article  Google Scholar 

  • Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341

    Article  Google Scholar 

  • Takano B (1987) Correlation of volcanic activity with sulfur oxy-anion speciation in a crater lake. Science 235:1633–1635

    Article  Google Scholar 

  • Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches. J Volcanol Geotherm Res 175:472–481

    Article  Google Scholar 

  • Taran YA, Esikov AD, Cheshko AL (1986) Deuterium and oxygen-18 in waters of the Mutnovsky geothermal area. Geochem Int 4:458–468

    Google Scholar 

  • Taran YA, Pokrovsky BG, Dubik YM (1989) Isotopic composition and origin of water from andesitic magmas. Dokl (Trans) Ac Sci USSR 304:440–443

    Google Scholar 

  • Taran YA, Hedenquist JW, Korzhinsky M, Tkachenko SI, Shmulovich KI (1995) Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochim Cosmochim Acta 59:1749–1761

    Article  Google Scholar 

  • Taran Y, Fischer TP, Pokrovsky B, Sano Y, Armienta MA, Macías JL (1998) Geochemistry of the volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bull Volcanol 59:436449

    Article  Google Scholar 

  • Taran YA, Bernard A, Gavilanes JC, Lunezheva E, Cortés A, Armienta MA (2001) Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico. Implications for magmatic gas-atmosphere interaction. J Volcanol Geotherm Res 108:245–264

    Article  Google Scholar 

  • Taran Y, Inguaggiato S, Cardellini C, Karpov G (2013) Posteruption chemical evolution of a volcanic caldera lake: Karymsky lake, Kamchatka. Geophys Res Lett 40:5142–5146. doi:10.1002/grl.50961

    Article  Google Scholar 

  • Tassi F, Vaselli O, Capaccioni B, Giolito C, Duarte E, Fernández E, Minissale A, Magro G (2005) The hydrothermal-volcanic system of Rincon de la Vieja volcano (Costa Rica): a combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. J Volcanol Geotherm Res 148:315–333

    Article  Google Scholar 

  • Taube H (1954) Use of oxygen isotope effects in the study of hydrationof ions. J Phys Chem 58:523–528

    Article  Google Scholar 

  • Todesco M, Rouwet D, Nespoli M, Bonafede M (2015) How steep is my seep? seepage in volcanic lakes, hints from numerical simulations. In: Rouwet D, Tassi F, Vandemeulebrouck J, Christenson B (eds) Volcanic Lakes. Springer, Berlin. doi: 10.1007/978-3-642-36833-2_14

  • Truesdell AH (1974) Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: consequences for isotope geochemistry. Earth Plant Sci Lett 23:387–396

    Article  Google Scholar 

  • Truesdell AH, Haizlip JR, Armannsson H, D’Amore F (1989) Origin and transport of chloride in superheated geothermal steam. Geothermics 18:295–304

    Article  Google Scholar 

  • Varekamp JC (2015) The chemical composition and evolution of volcanic lakes. In: Rouwet D, Tassi F, Vandemeulebrouck J, Christenson B (eds) Volcanic Lakes. Springer, Berlin. doi: 10.1007/978-3-642-36833-2_4

  • Varekamp JC (2002) Lake contamination models for evolution towards steady state. J Limnol 62:67–72

    Article  Google Scholar 

  • Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. J Volcanol Geotherm Res 97:309–327

    Article  Google Scholar 

  • Vuataz FD, Goff F (1986) Isotope geochemistry of thermal and nonthermal waters in the Valles caldera, Jemez Mountains, Northern New Mexico. J Geophys Res 91:1835–1853

    Article  Google Scholar 

  • Ward CA, Stanga D (2001) Interfacial conditions duringevaporation or condensation of water. Phys Rev E 64(051509):U347–U354

    Google Scholar 

  • Washburn EW, West CJ, Dorsey NE, Bichowsky FR, Klemenc A (1928) International critical tables of numerical data, physics, chemistry and technology. International research council of the national academic of science. (1st edn) McGraw-Hill Book Company, Inc, New York, p 301

    Google Scholar 

  • Weisman RN, Brutsaert W (1973) Evaporation and cooling of a lake under unstable atmospheric conditions. Water Resour Res 9:1242–1257

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank R.A. Mora-Amador, C.J. Ramírez-Umaña and G. González-Ilama for additional sampling of the Poás crater lake. INGV-Palermo staff is grateful for support in analyses. We thank Cinzia Federico and Bruno Capaccioni for insightful comments as reviewers of this chapter Franco Tassi is acknowledged for efficient editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Rouwet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rouwet, D., Ohba, T. (2015). Isotope Fractionation and HCl Partitioning During Evaporative Degassing from Active Crater Lakes. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_7

Download citation

Publish with us

Policies and ethics