Skip to main content
Log in

High-resolution clay mineral assemblages in the inner shelf mud wedge of the East China Sea during the Holocene: Implications for the East Asian Monsoon evolution

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The inner shelf mud wedge of the East China Sea (ECS) is a high-sedimentation-rate fine-grained sediment unit that has preserved a continuous environmental evolution history since the last deglaciation. We present a high-resolution clay mineralogical study from Core MD06-3040 to semi-quantitatively evaluate terrigenous sediment contributions from various potential provenances throughout the Holocene. The results showed that the clay mineral assemblage is composed of dominant illite (34–49%), moderate smectite (16–41%) and chlorite (15–28%), and minor kaolinite (5–12%). Provenance analysis suggested that most fine-grained terrigenous sediments originated from the Yangtze River, with minor sediments derived from Taiwan island and negligible sediments from nearby Zhejiang and Fujian provinces. Time series variation in the contribution of the Yangtze source fluctuated in the range of 38–80%, whereas that of Taiwan island had a converse variation pattern from ∼10% to ∼55%, and the contribution of Fujian was relatively stable in the range of 7–11% throughout the Holocene. The fluctuations of clay mineral assemblages and variations of clay mineral contributions from different provenances of Core MD06-3040 were controlled by the variability of precipitation in the Yangtze drainage associated with periodic fluctuations in the East Asian monsoonal circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Z, Porter S C, Kutzbach J E, Xiao W, Wang S M, Liu X D, Li X Q, Zhou W J. 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev, 19: 743–762

    Article  Google Scholar 

  • Barber D C, Dyke A, Hillaire-Marcel C, Jennings A E, Andrews J T, Kerwin M W, Bilodeau G, McNeely R, Southon J, Morehead M D, Gagnon J M. 1999. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400: 344–348

    Article  Google Scholar 

  • Bianchi G G, McCave I N. 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 397: 515–517

    Article  Google Scholar 

  • Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76: 803–832

    Article  Google Scholar 

  • Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal, 6: 457–474

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans M N, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294: 2130–2136

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Demenocal P, Priore P, Cullen H, Hajdas I, Bonani G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278: 1257–1266

    Article  Google Scholar 

  • Boulay S, Colin C, Trentesaux A, Frank N, Liu Z. 2005. Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol, 228: 260–277

    Article  Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. New York: Springer-Verlag

    Book  Google Scholar 

  • Chen J, Ma J Q, Xu K H, Liu Y, Cao W H, Wei T Y, Zhao B C, Chen Z Y. 2017. Provenance discrimination of the clay sediment in the western Taiwan Strait and its implication for coastal current variability during the late-Holocene. Holocene, 27: 110–121

    Article  Google Scholar 

  • Chen Q, Liu Z F, Kissel C. 2017. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary. Sci Rep, 7: 42083

    Article  Google Scholar 

  • Dadson S J, Hovius N, Chen H, Dade W B, Hsieh M L, Willett S D, Hu J C, Horng M J, Chen M C, Stark C P, Lague D, Lin J C. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426: 648–651

    Article  Google Scholar 

  • Diekmann B, Hofmann J, Henrich R, Fütterer D K, Röhl U, Wei K Y. 2008. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Mar Geol, 255: 83–95

    Article  Google Scholar 

  • Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233: 71–86

    Article  Google Scholar 

  • Dou Y, Yang S, Liu Z, Clift P D, Yu H, Berne S, Shi X. 2010. Clay mineral evolution in the central Okinawa Trough since 28 ka: Implications for sediment provenance and paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol, 288: 108–117

    Article  Google Scholar 

  • Fan D J, Yang Z S, Mao D, Guo Z G. 2001. Clay minerals and geochemistry of the sediments from the Yangtze and Yellow Rivers (in Chinese). Mar Geol Quat Geol, 21: 7–12

    Google Scholar 

  • Gao S. 2013. Research Topics in Marine Sediment Dynamics (in Chinese). Nanjing: Nanjing University Press. 398

    Google Scholar 

  • Gao S, Collins M B. 2014. Holocene sedimentary systems on continental shelves. Mar Geol, 352: 268–294

    Article  Google Scholar 

  • Gibbs R J. 1977. Clay mineral segregation in the marine environment. J Sediment Res, 47: 237–243

    Google Scholar 

  • Gingele F X, de Deckker P, Hillenbrand C D. 2001a. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses: Clay mineral evidence. Aust J Earth Sci, 48: 867–874

    Article  Google Scholar 

  • Gingele F X, De Deckker P, Hillenbrand C D. 2001b. Clay mineral distribution in surface sediments between Indonesia and NW Australia—Source and transport by ocean currents. Mar Geol, 179: 135–146

    Article  Google Scholar 

  • Holtzapffel T. 1985. Les mineraux argileux. Société géologique du Nord, 136

    Google Scholar 

  • Huh C A, Chen W, Hsu F H, Su C C, Chiu J K, Lin S, Liu C S, Huang B J. 2011. Modern (<100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Cont Shelf Res, 31: 47–63

    Article  Google Scholar 

  • Jian Z, Wang P, Saito Y, Wang J, Pflaumann U, Oba T, Cheng X. 2000. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean. Earth Planet Sci Lett, 184: 305–319

    Article  Google Scholar 

  • Li C S, Shi X F, Kao S J, Chen M T, Liu Y G, Fang X S, Lü H H, Zou J J, Liu S F, Qiao S Q. 2012. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chin Sci Bull, 57: 673–681

    Article  Google Scholar 

  • Li G G. 1990. Clay mineral composition, distribution and geological implication of surface sediment in the China marginal sea. Acta Oceanol Sin, 12: 470–479

    Google Scholar 

  • Li K R. 1993. Climate of China’s offshore and Northwest Pacific (in Chinese). Beijing: China Ocean Press

    Google Scholar 

  • Liu J P, Li A C, Xu K H, Velozzi D M, Yang Z S, Milliman J D, DeMaster D J. 2006. Sedimentary features of the Yangtze River-derived alongshelf clinoform deposit in the East China Sea. Cont Shelf Res, 26: 2141–2156

    Article  Google Scholar 

  • Liu J P, Liu C S, Xu K H, Milliman J D, Chiu J K, Kao S J, Lin S W. 2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Mar Geol, 256: 65–76

    Article  Google Scholar 

  • Liu J P, Xu K H, Li A C, Milliman J D, Velozzi D M, Xiao S B, Yang Z S. 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85: 208–224

    Article  Google Scholar 

  • Liu J P, Xue Z, Ross K, Wang H J, Yang Z S, Li A C, Gao S. 2009. Fate of sediments delivered to the sea by asian large rivers: Long-distance transport and formation of remote alongshore clinothems. Sediment Rec, 7: 4–9

    Article  Google Scholar 

  • Liu S F, Shi X F, Fang X S, Dou Y G, Liu Y G, Wang X C. 2014. Spatial and temporal distributions of clay minerals in mud deposits on the inner shelf of the East China Sea: Implications for paleoenvironmental changes in the Holocene. Quat Int, 349: 270–279

    Article  Google Scholar 

  • Liu S F, Shi X F, Liu Y G, Yang G, Li C, Fang X S. 2011. Distributions of suspended matter in the inner-shelf mud area of the East China Sea in summer and their influence factors (in Chinese). Adv in Mar Sci, 29: 37–46

    Google Scholar 

  • Liu Z F, Colin C, Li X J, Zhao Y L, Tuo S T, Chen Z, Siringan F P, Liu J T, Huang C Y, You C F, Huang K F. 2010a. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Mar Geol, 277: 48–60

    Article  Google Scholar 

  • Liu Z F, Colin C, Trentesaux A, Blamart D, Bassinot F, Siani G, Sicre M A. 2004. Erosional history of the eastern Tibetan Plateau since 190 kyr ago: Clay mineralogical and geochemical investigations from the southwestern South China Sea. Mar Geol, 209: 1–18

    Article  Google Scholar 

  • Liu Z F, Li X J, Colin C, Ge H M. 2010b. A high-resolution clay mineralogical record in the northern South China Sea since the Last Glacial Maximum, and its time series provenance analysis. Chin Sci Bull, 55: 4058–4068

    Article  Google Scholar 

  • Liu Z F, Tuo S T, Colin C, Liu J T, Huang C Y, Selvaraj K, Chen C T A, Zhao Y L, Siringan F P, Boulay S, Chen Z. 2008. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Mar Geol, 255: 149–155

    Article  Google Scholar 

  • Liu Z F, Wang H, Hantoro W S, Sathiamurthy E, Colin C, Zhao Y L, Li X J. 2012. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chem Geol, 291: 1–12

    Article  Google Scholar 

  • Liu Z F, Zhao Y L, Colin C, Stattegger K, Wiesner M G, Huh C A, Zhang Y W, Li X J, Sompongchaiyakul P, You C F, Huang C Y, Liu J T, Siringan F P, Le K P, Sathiamurthy E, Hantoro W S, Liu J G, Tuo S T, Zhao S H, Zhou S W, He Z D, Wang Y C, Bunsomboonsakul S, Li Y L. 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Sci Rev, 153: 238–273

    Article  Google Scholar 

  • Liu Z F, Zhao Y L, Wang Y J, Chen Q. 2017. Clay mineralogical proxy of the East Asian Monsoon evolution during the Quaternary in the South China Sea (in Chinese), Quat Sci, 37: 921–933

    Google Scholar 

  • Mao C P, Chen J, Yuan X Y, Yang Z F, Balsam W, Ji J F. 2010. Seasonal variation in the mineralogy of the suspended particulate matter of the lower Changjiang River at Nanjing, China. Clays Clay Miner, 58: 691–706

    Article  Google Scholar 

  • Mayewski P A, Rohling E E, Stager J C, Karlén W, Maasch K A, Meeker L D, Meyerson E A, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider R R, Steig E J. 2004. Holocene climate variability. Quat Res, 62: 243–255

    Article  Google Scholar 

  • Milliman J D, Huang-ting S, Zuo-sheng Y, H. Mead R. 1985a. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Cont Shelf Res, 4: 37–45

    Article  Google Scholar 

  • Milliman J D, Beardsley R C, Yang Z S, Limeburner R. 1985b. Modern Huanghe-derived muds on the outer shelf of the East China Sea: Identification and potential transport mechanisms. Cont Shelf Res, 4: 175–188

    Article  Google Scholar 

  • Milliman J D, Farnsworth K L. 2011. River Discharge to the Coastal Ocean: A Global Synthesis. New York: Cambridge University Press. 304–307

    Book  Google Scholar 

  • Milliman J D, Kao S J. 2005. Hyperpycnal discharge of fluvial sediment to the ocean: Impact of Super-Typhoon Herb (1996) on Taiwanese rivers. J Geol, 113: 503–516

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar Geol, 130: 203–229

    Article  Google Scholar 

  • Petschick R. 2000. MacDiff 4.2.6 (WWW Document). www.geol-pal.unifrankfurt. de/Staff/Homepages/Petschick/PDFs/MacDiffManualE.pdf

    Google Scholar 

  • Qin Y S, Zhao Y Y, Chen L R, Zhao S L. 1987. Geology in the East China Sea (in Chinese). Beijing: Science Press

    Google Scholar 

  • Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatté C, Heaton T J, Hoffmann D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon, 55: 1869–1887

    Article  Google Scholar 

  • Saito Y, Yang Z S, Hori K. 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 41: 219–231

    Article  Google Scholar 

  • Schulz M, Paul A. 2002. Holocene climate variability on centennial-tomillennial time scales: 1. Climate records from the North-Atlantic Realm. In: Wefer G, Berger W H, Behre K E, Jansen E, eds. Climate Development and History of the North Atlantic Realm. Berlin: Springer Berlin Heidelberg. 41–54

  • Shi X F, Liu S F, Qiao S Q, Liu Y G, Fang X S, Wu Y H, Zhu Z W. 2010. Depositional features and palaeoenvironmental records of the mud deposits in Min-Zhe coastal mud area, East China Sea (in Chinese). Mar Geol Quat Geol, 30: 19–30

    Article  Google Scholar 

  • Stuiver M, Braziunas T F. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10000 BC. Radiocarbon, 35: 137–189

    Article  Google Scholar 

  • Stuiver M, Reimer P J, Bard E, Beck J W, Burr G S, Hughen K A, Kromer B, McCormac G, Van Der Plicht J, Spurk M. 1998. INTCAL98 radiocarbon age calibration, 24000–0 cal BP. Radiocarbon, 40: 1041–1083

    Article  Google Scholar 

  • Su J L, Yuan Y L. 2005. The Oceanography in the Chinese Margin Sea (in Chinese). Beijing: China Ocean Press

    Google Scholar 

  • Uehara K, Saito Y. 2003. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sediment Geol, 162: 25–38

    Article  Google Scholar 

  • Wagner G, Beer J, Masarik J, Muscheler R, Kubik P W, Mende W, Laj C, Raisbeck G M, Yiou F. 2001. Presence of the solar de vries cycle (∼205 years) during the Last Ice Age. Geophys Res Lett, 28: 303–306

    Article  Google Scholar 

  • Wang K, Zheng H, Tada R, Irino T, Zheng Y, Saito K, Karasuda A. 2014. Millennial-scale East Asian Summer Monsoon variability recorded in grain size and provenance of mud belt sediments on the inner shelf of the East China Sea during mid-to late Holocene. Quat Int, 349: 79–89

    Article  Google Scholar 

  • Wang L, Fan D J, Li W R, Zhang X L, Chen B, Tian Y. 2015. The variation of clay minerals contents on the inner shelf of the East China Sea in the last one hundred years and its environmental implication (in Chinese). Acta Oceanol Sin, 37: 87–100

    Google Scholar 

  • Wang Q, Yang S Y. 2013. Clay mineralogy indicates the Holocene monsoon climate in the Changjiang (Yangtze River) Catchment, China. Appl Clay Sci, 74: 28–36

    Article  Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854–857

    Article  Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley T J, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan J O, Küttel M, Müller S A, Prentice I C, Solomina O, Stocker T F, Tarasov P, Wagner M, Widmann M. 2008. Mid-to Late Holocene climate change: An overview. Quat Sci Rev, 27: 1791–1828

    Article  Google Scholar 

  • Xiao S B, Li A C, Jiang F Q, You Z, Chen L, 2005. Provenance analysis of mud along the Min-Zhe coast since 2 ka BP. Acta Sediment Sin, 23: 268–274

    Google Scholar 

  • Xiao S B, Li A C, Liu J P, Chen M H, Xie Q, Jiang F Q, Li T G, Xiang R, Chen Z. 2006. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze Riverderived mud in the East China Sea. Palaeogeogr Palaeoclimatol Palaeoecol, 237: 293–304

    Article  Google Scholar 

  • Xu K H, Li A C, Liu J P, Milliman J D, Yang Z S, Liu C S, Kao S J, Wan S M, Xu F J. 2012. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system. Mar Geol, 291-294: 176–191

    Article  Google Scholar 

  • Xu K H, Milliman J D, Li A C, Liu J P, Kao S J, Wan S M. 2009. Yangtzeand Taiwan-derived sediments on the inner shelf of East China Sea. Cont Shelf Res, 29: 2240–2256

    Article  Google Scholar 

  • Xu Y H, Chen J, Wang A J, Li Y H, Wang W G, Zhang X F, Lai Z K. 2013. Clay minerals in surface sediments of the Taiwan strait and their provenance (in Chinese). Acta Sediment Sin, 31: 120–129

    Google Scholar 

  • Yang S Y, Jung H S, Lim D I, Li C X. 2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Sci Rev, 63: 93–120

    Article  Google Scholar 

  • Yang Z S. 1988. Clay mineral assemblages and chemical characters in Changjiang, Huanghe and Zhujiang sediments, and its relationwith the climate environment in the source areas (in Chinese). Oceanol Limnol Sin, 19: 336–346

    Google Scholar 

  • Zhao Q H, Jian Z M, Zhang Z, Cheng X R, Wang K, Zheng H B. 2009. Holocene benthic foraminifera and ostracord from the shelf mud area of the East China Sea and their paleoenvironmental implications (in Chinese). Acta Micropalaeontol Sin, 26: 117–128

    Article  Google Scholar 

  • Zheng Y, Kissel C, Zheng H B, Laj C, Wang K. 2010. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications. Mar Geol, 268: 34–42

    Article  Google Scholar 

  • Zhou X J, Gao S, Jia J J. 2003. Preliminary evalution of the stability of Changjiang clay minerals as fingerprints for material source tracing (in Chinese). Oceanol Limnol Sin, 34: 683–692

    Google Scholar 

  • Zong Y. 2004. Mid-Holocene sea-level highstand along the Southeast Coast of China. Quat Int, 117: 55–67

    Article  Google Scholar 

Download references

Acknowledgements

All samples were provided by the MD155- Marco Polo 2-IMAGES X IV cruise, we sincerely thank all participants and scientists on board. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91528304, 41530964 & 41676028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Liu, Z. & Zhao, Y. High-resolution clay mineral assemblages in the inner shelf mud wedge of the East China Sea during the Holocene: Implications for the East Asian Monsoon evolution. Sci. China Earth Sci. 61, 1316–1329 (2018). https://doi.org/10.1007/s11430-017-9208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9208-1

Keywords

Navigation