Skip to main content
Log in

Predictable component analysis of a system based on nonlinear error information entropy

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on the theory of information entropy concerning nonlinear errors, the growth rules for the nonlinear errors of the Lorenz system and its predictable components are studied. The results show that the impact of the uncertainties, both in the initial error and in the system itself, needs to be considered in a quantitative estimation of the system predictability. The nonlinear error growth is related to the magnitude of the initial error, and to the spatial distribution of the initial error vectors. Even if these initial errors have the same magnitude but different directions, there are also differences in the nonlinear error growth. The predictability of nonlinear error growth is related to the error component, but not related to the ratio of these components. The component with the highest/lowest rate of contribution does not necessarily have the greatest/least predictability. The different components have different predictabilities, and in different time periods, the different predictable components also have different predictabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov R, Majda A, Kleeman R. 2005. Information theory and predictability for low-frequency variability. J Atmos Sci, 62: 65–87

    Article  Google Scholar 

  • Chen B H, Li J P, Ding R Q. 2006. Nonlinear local Lyapunov exponent and atmospheric predictability research. Sci China Ser D-Earth Sci, 49: 11430–11436

    Google Scholar 

  • Chen L, Duan W S, Xu H. 2015. A SVD-based ensemble projection algorithm for calculating the conditional nonlinear optimal perturbation. Sci China Earth Sci, 58: 385–394

    Article  Google Scholar 

  • Chou J F, Zheng Z H, Sun S P. 2010. The think about 10–30d extended-range numerical weather prediction strategy facing the atmosphere chaos (in Chinese). Sci Meteor Sin, 30: 569–573

    Google Scholar 

  • DelSole T. 2004. Predictability and information theory. Part I: Measure of predictability. J Atmos Sci, 61: 2425–2440

    Article  Google Scholar 

  • Delsole T, Tippett M K. 2007. Predictability: Recent insights from information theory. Rev Geophys, 45: RG4002

    Article  Google Scholar 

  • Delsole T, Tippett M K. 2008. Predictable components and singular vectors. J Atmos Sci, 65: 1666–1678

    Article  Google Scholar 

  • DelSole T, Tippett M K. 2009a. Average predictability time. Part I: Theory. J Atmos Sci, 66: 1172–1187

    Article  Google Scholar 

  • DelSole T, Tippett M K. 2009b. Average predictability time. Part II: Seamless diagnosis of predictability on multiple time scales. J Atmos Sci, 66: 1188–1204

    Article  Google Scholar 

  • Delsole T, Tippett M K, Shukla J. 2011. A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Clim, 24: 909–926

    Article  Google Scholar 

  • Ding R Q, Li J P. 2008. Comparison of the influences of initial error and model parameter error on the predictability of numerical forecast (in Chinese). Chin J Geophys, 51: 1007–1012

    Article  Google Scholar 

  • Ding R Q, Li J P, Ha K J. 2008. Nonlinear local Lyapunov exponent and quantification of local predictability. Chin Phys Lett, 25: 1919–1922

    Article  Google Scholar 

  • Ding R Q, Li J P. 2009. The temporal-spatial distributions of weather predictability of different variables (in Chinese). Acta Meteor Sin, 67: 343–354

    Google Scholar 

  • Ding R, Li J, Seo K H. 2011. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon Wea Rev, 139: 2421–2438

    Article  Google Scholar 

  • Duan W S, Mu M. 2009. Conditional nonlinear optimal perturbation: Applications to stability, sensitivity, and predictability. Sci China Ser D-Earth Sci, 52: 883–906

    Article  Google Scholar 

  • Duan W S, Zhang R. 2010. Is model parameter error related to spring predictability barrier for El Nino events? Adv Atmos Sci, 27: 1003–1013

    Article  Google Scholar 

  • Duan W S, Yu Y S, Xu H, Xu H, Zhao P. 2012. Behaviors of nonlinearities modulating El Nino events induced by optimal precursory disturbance. Clim Dyn, 40: 1339–1413

    Google Scholar 

  • Duan W, Wei C. 2013. The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int J Climatol, 33: 1280–1292

    Article  Google Scholar 

  • Jia L, Delsole T. 2011. Diagnosis of multiyear predictability on continental scales. J Clim, 24: 5108–5124

    Article  Google Scholar 

  • Li A B, Zhang L F, Wang Q L, Li B, Li Z Z, Wang Y Q. 2013. Information theory in nonlinear error growth dynamics and its application to predictability: Taking the Lorenz system as an example. Sci China Earth Sci, 56: 1413–1421

    Article  Google Scholar 

  • Li A B, Zhang L F, Wang Q L. 2014. Estimation of atmospheric predictability for multivariable system using information theory in nonlinear error growth dynamics. Sci China Earth Sci, 57: 1907–1918

    Article  Google Scholar 

  • Li J P, Ding R Q. 2008. Temporal-spatial distribution of predictability limit of short-term climate (in Chinese). Chin J Atmos Sci, 32: 975–986

    Google Scholar 

  • Li J, Ding R. 2011. Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon Wea Rev, 139: 3265–3283

    Article  Google Scholar 

  • Li J, Ding R. 2013. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int J Climatol, 33: 1936–1947

    Article  Google Scholar 

  • Liu D Q, Ding R Q, Li J P, Feng J. 2015. Preliminary application of the nonlinear local Lyapunov exponent to target observation (in Chinese). Chin J Atmos Sci, 39: 329–337

    Google Scholar 

  • Lorenz E N. 1963. Deterministic nonperiodic flow. J Atmos Sci, 20: 130–141

    Article  Google Scholar 

  • Mu M, Duan W. 2003. A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chin Sci Bull, 48: 1045–1047

    Article  Google Scholar 

  • Mu M, Duan W S. 2013. Applications of conditional nonlinear optimal perturbation to the studies of predictability problems (in Chinese). Chin J Atmos Sci, 37: 281–296

    Google Scholar 

  • Mu M, Duan W, Wang Q, Wang Q, Zhang R. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process Geophys, 12: 211–220

    Article  Google Scholar 

  • Mu M, Jiang Z N. 2008. A new approach to the generation of initial perturbations for ensemble prediction: Condition nonlinear optimal perturbation. Chin Sci Bull, 53: 2062–2068

    Google Scholar 

  • Mu M, Zhou F F, Wang H L. 2009. A method to identify the sensitive areas in targeting for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon Weather Rev 2009, 137: 1623–1639

    Article  Google Scholar 

  • Schneider T, Griffies S M. 1999. A conceptual framework for predictability studies. J Clim, 12: 3133–3155

    Article  Google Scholar 

  • Wang Q G, Chou J F, Feng G L. 2014. Extracting predictable components and forecasting techniques in extended-range numerical weather prediction. Sci China Earth Sci, 57: 1525–1537

    Article  Google Scholar 

  • Wang Q G, Feng G L, Zheng Z H, Zhi R, Chou J F. 2012. The preliminary analysis of the procedures of extracting predicable components in numerical model of Lorenz system (in Chinese). Chin J Atmos Sci, 36: 539–550

    Google Scholar 

  • Zheng Z H, Feng G L, Huang J P, Chou J F. 2012. Predictability-based extended-range ensemble prediction method and numerical experiments (in Chinese). Acta Phys Sin, 61: 199203

    Google Scholar 

  • Zheng Z H, Huang J P, Feng G L, Chou J F. 2013. Forecast scheme and strategy for extended-range predictable components. Sci China Earth Sci, 56: 878–889

    Article  Google Scholar 

  • Zheng Z H, Ren H L, Huang J P. 2009. Analogue correction of errors based on seasonal climate predictable components and numerical experiments (in Chinese). Acta Phys Sin, 58: 7359-7367

    Google Scholar 

  • Zhou F F, Zhang H. 2014. Study of the schemes based on CNOP method to identify sensitive areas for typhoon targeted observations (in Chinese). Chin J Atmos Sci, 38: 261–272

    Google Scholar 

Download references

Acknowledgements

The author gratefully thanks the two anonymous reviewers for their valuable comments. This work was supported by the National Natural Science Foundation of China (Grant No. 41375063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiFeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Zhang, L., Li, X. et al. Predictable component analysis of a system based on nonlinear error information entropy. Sci. China Earth Sci. 60, 501–507 (2017). https://doi.org/10.1007/s11430-016-5127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5127-8

Keywords

Navigation