Skip to main content
Log in

Numerical simulation of the effect of lower positive charge region in thunderstorms on different types of lightning

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulations are performed to quantitatively investigate the effect of lower positive charge (LPC) on different types of lightning. The results show: (1) The LPC plays a key role in generating negative cloud-to-ground (CG) flashes and inverted intra-cloud (IC) lightning, and with the increase of charge density or distribution range of LPC region, lightning type changes from positive polarity IC lightning to negative CG flashes and then to inverted IC lightning. (2) Relative to distribution range of charge regions, the magnitude of charge density of the LPC region plays a dominant role in lightning type. Only when the maximal charge density value of LPC region is within a certain range, can negative CG flashes occur, and the occurrence probability is relatively fixed. (3) In this range, the charge density and distribution range of LPC region jointly determine the occurrence of negative CG flashes, which has a linear boundary with the trigger condition of IC lightning. (4) The common effect of charge density and distribution range of the LPC region is to change the distribution of positive potential well of bottom part of thunderstorms, and inverted IC lightning occurs when the initial reference potential is close to 0 MV, and negative CG flashes occur when the initial reference potential is far less than 0 MV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akita M, Yoshida S, Nakamura Y, et al. 2011. Effects of charge distribution in thunderstorm on lightning propagation paths in Darwin, Australia. J Atmos Sci, 68: 719–726

    Article  Google Scholar 

  • Bell T F, Pasko V P, Inan U S. 1995. Runaway electrons as a source of red sprites in the mesosphere. Geophys Res Lett, 22: 2127–2130

    Article  Google Scholar 

  • Brown K A, Krehbiel P R, Moore C B, et al. 1971. Electrical screening layers around charged clouds. J Geophys Res, 76: 2825–2835

    Article  Google Scholar 

  • Bruning E C, Rust W D, Schuur T J, et al. 2007. Electrical and polarimetric radar observations of a muticell storm in TELEX. Mon Weather Rev, 135: 2525–2544

    Article  Google Scholar 

  • Clarence N D, Malan D J. 1957. Preliminary discharge processes in lightning flashes to ground. Q J R Meteorol Soc, 83: 161–172

    Article  Google Scholar 

  • Coleman L M, Marshall T C, Stolzenburg M. 2003. Effects of charge and electrostatic potential on lightning propagation. J Geophys Res, 109: 1–12

    Google Scholar 

  • Cui H H, Qie X S, Zhang Q L, et al. 2009. Intracloud discharge and the correlated basic charge structure of a thunderstorm Zhongchuan, a Chinese Inland Plateau region. Atmos Res, 91: 425–429

    Article  Google Scholar 

  • Dong W S, Liu X S, Zhang Y J, et al. 2002. Broadband interferometer observations of leader-stroke of cloud-to-ground lightning discharges. Sci China Ser D-Earth Sci, 32: 81–88

    Google Scholar 

  • Guo F X, Zhang Y J, Qie X S, et al. 2003. Numerical simulation of different charge structures in thunderstorm (in Chinese). Pla Meteorol, 22: 268–274

    Google Scholar 

  • Kasemir H W. 1960. A contribution to the electrostatic theory of a lightning discharges. J Geophys Res, 65: 1873–1878

    Article  Google Scholar 

  • Klett J D. 1972. Charge screening layers around electrified clounds. J Geophys Res, 77: 3187–3195

    Article  Google Scholar 

  • Krehbiel P R, Riousset J A, Pasko V P, et al. 2008. Upward electrical discharges from thunderstorm. Nat Geosci, 1: 233–237

    Article  Google Scholar 

  • Liu X S, Ye Z X, Shao X M. 1989. Intracloud lightning discharges in the lower part of thunderstorm. Acta Meteorol Sin, 3: 212–219

    Google Scholar 

  • Mansell E R, Macgorman D R, Ziegler C L, et al. 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J Geophys Res, 107: 1–12

    Google Scholar 

  • Mansell E R, Macgorman D R, Ziegler C L, et al. 2005. Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J Geophys Res, 110: 1–24

    Google Scholar 

  • Marshall T C, Rust W D, Winn W P, et al. 1989. Electrical structure in two thunderstorm anvil clouds. J Geophys Res, 94: 2171–2181

    Article  Google Scholar 

  • Marshall T C, Stolzenburg M. 1998. Estimates of cloud charge densities in thunderstorms. J Geophys Res, 103: 19769–19775

    Article  Google Scholar 

  • Mazur V, Ruhnke L H. 1998. Model of electric charges in thunderstorms and associated lightning. J Geophys Res, 103: 23299–23308

    Article  Google Scholar 

  • Nag A, Rakov V A. 2009. Some inferences on the role of lower positive charge region in facilitating different types of lightning. Geophys Res Lett, 36: 1–5

    Article  Google Scholar 

  • Pawar S D, Kamra A K. 2004. Evolution of lightning and the possible initiation/triggering of lightning discharges by the lower positive charge center in an isolated thundercloud in the tropics. J Geophys Res, 109: 1–12

    Google Scholar 

  • Qie X S, Yu Y, Liu X S, et al. 2000. K-type breakdown process of intracloud discharge in Chinese inland plateau. Prog Nat Sci, 10: 607–611

    Google Scholar 

  • Qie X S, Zhang T L, Chen C P, et al. 2005. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys Res Lett, 32: 1–4

    Article  Google Scholar 

  • Qie X S, Zhang T L, Zhang G S, et al. 2009. Electrical characteristics of thunderstorms in different plateau regions of China. Atmos Res, 91: 244–249

    Article  Google Scholar 

  • Shao X M, Krehbiel P R. 1996. The spatial and temporal development of intracloud lightning. J Geophys Res, 101: 26641–26668

    Article  Google Scholar 

  • Stolzenburg M, Rust W D, Marshall T C. 1998. Electrical structure in thunderstorm convective regions, 2, isolated storms. J Geophys Res, 103: 14079–14096

    Article  Google Scholar 

  • Stolzenburg M, Rust W D, Marshall T C. 1998. Electrical structure in thunderstorm convective regions, 3, synthesis. J Geophys Res, 103: 14097–14108

    Article  Google Scholar 

  • Tan Y B, Tao S C, Zhu B Y, et al. 2006a. Numerical simulations of the bi-level and branched structure of intra-cloud lightning flashes. Sci China Ser D-Earth Sci, 36: 486–496

    Google Scholar 

  • Tan Y B, Tao S C, Zhu B Y, et al. 2007. A simulation of the effects of intra-cloud lightning discharges on charges and electrostatic potential distributions in a thundercloud. Chi J Geophy, 50: 916–930

    Article  Google Scholar 

  • Tan Y B, Tao S C, Zhu B Y. 2006b. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys Res Lett, 33: 1–4

    Article  Google Scholar 

  • Tao S C, Tan Y B, Zhu B Y, et al. 2009. Fine-resolution simulation of cloud-to-ground lightning and thundercloud charge transfer. Atmos Res, 91: 360–370

    Article  Google Scholar 

  • Tessendorf S A, Rutledge S A. 2007. Radar and lightning observations of Normal and Inverted polarity Multicellular storms from STEPS. Mon Weather Rev, 135: 3682–3706

    Article  Google Scholar 

  • Vonnegut B, Moore C B, Espinola R P, et al. 1966. Electric potential gradients above thunderstorms. J Atmos Sci, 23: 764–770

    Article  Google Scholar 

  • Wang C W, Chen Q, Liu X S, et al. 1987. The electric field produced by the lower positive charge center of thundercloud (in Chinese). Pla Meteorol, 6: 65–74

    Google Scholar 

  • Williams. 1989. The tripole structure of thunderstorms. J Geophys Res, 94: 13151–13167

    Article  Google Scholar 

  • Zhang Y J, Krehbiel P R, Liu X S. 2002. Polarity inverted intracloud discharges and electric charge structure of thunderstorms. Chin Sci Bull, 47: 1725–1729

    Article  Google Scholar 

  • Zhang Y J, Meng Q, Lu W T, et al. 2006. Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms. Chin Sci Bull, 51: 198–212

    Article  Google Scholar 

  • Zhang Y J, Dong W S, Zhao Y, et al. 2004. Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai-Tibet Plateau. Sci China Ser D-Earth Sci, (Supp. l): 108–114

    Google Scholar 

  • Zhao Z K, Qie X S, Zhang T L, et al. 2010. Electric field soundings and the charge structure within an isolated thunderstorm. Chin Sci Bull, 55: 872–876

    Article  Google Scholar 

  • Zheng D, Zhang Y J, Meng Q, et al. 2010. Lightning activity and electrical structure in a thunderstorm that continued for more than 24h. Atmos Res, 97: 241–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongBo Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Liang, Z., Shi, Z. et al. Numerical simulation of the effect of lower positive charge region in thunderstorms on different types of lightning. Sci. China Earth Sci. 57, 2125–2134 (2014). https://doi.org/10.1007/s11430-014-4867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4867-7

Keywords

Navigation