Skip to main content
Log in

An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Detecting genes that affect specific traits (such as human diseases and crop yields) is important for treating complex diseases and improving crop quality. A genome-wide association study (GWAS) provides new insights and directions for understanding complex traits by identifying important single nucleotide polymorphisms. Many GWAS summary statistics data related to various complex traits have been gathered recently. Studies have shown that GWAS risk loci and expression quantitative trait loci (eQTLs) often have a lot of overlaps, which makes gene expression gradually become an important intermediary to reveal the regulatory role of GWAS. In this review, we review three types of gene-trait association detection methods of integrating GWAS summary statistics and eQTLs data, namely colocalization methods, transcriptome-wide association study-oriented approaches, and Mendelian randomization-related methods. At the theoretical level, we discussed the differences, relationships, advantages, and disadvantages of various algorithms in the three kinds of gene-trait association detection methods. To further discuss the performance of various methods, we summarize the significant gene sets that influence high-density lipoprotein, low-density lipoprotein, total cholesterol, and triglyceride reported in 16 studies. We discuss the performance of various algorithms using the datasets of the four lipid traits. The advantages and limitations of various algorithms are analyzed based on experimental results, and we suggest directions for follow-up studies on detecting gene-trait associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbeira, A.N., Dickinson, S.P., Bonazzola, R., Zheng, J., Wheeler, H.E., Torres, J.M., Torstenson, E.S., Shah, K.P., Garcia, T., Edwards, T.L., et al. (2018). Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 9, 1825.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbeira, A.N., Pividori, M., Zheng, J., Wheeler, H.E., Nicolae, D.L., and Im, H.K. (2019). Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet 15, e1007889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barfield, R., Feng, H., Gusev, A., Wu, L., Zheng, W., Pasaniuc, B., and Kraft, P. (2018). Transcriptome-wide association studies accounting for colocalization using Egger regression. Genet Epidemiol 42, 418–433.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berzuini, C., Guo, H., Burgess, S., and Bernardinelli, L. (2020). A Bayesian approach to Mendelian randomization with multiple pleiotropic variants. Biostatistics 21, 86–101.

    Article  PubMed  Google Scholar 

  • Bhattacharya, A., Li, Y., and Love, M.I. (2021). MOSTWAS: multi-omic strategies for transcriptome-wide association studies. PLoS Genet 17, e1009398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowden, J., Davey Smith, G., and Burgess, S. (2015). Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44, 512–525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden, J., Davey Smith, G., Haycock, P.C., and Burgess, S. (2016). Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40, 304–314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess, S., and Thompson, S.G. (2013). Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol 42, 1134–1144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cano-Gamez, E., and Trynka, G. (2020). From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front Genet 11, 424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, C., Kwok, D., Edie, S., Li, Q., Ding, B., Kossinna, P., Campbell, S., Wu, J., Greenberg, M., and Long, Q. (2021). kTWAS: integrating kernel machine with transcriptome-wide association studies improves statistical power and reveals novel genes. Brief Bioinf 22, bbaa270.

    Article  Google Scholar 

  • Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J., and Zou, Q. (2022). webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res 50, D1123–D1130.

    Article  CAS  PubMed  Google Scholar 

  • Chun, S., Casparino, A., Patsopoulos, N.A., Croteau-Chonka, D.C., Raby, B.A., De Jager, P.L., Sunyaev, S.R., and Cotsapas, C. (2017). Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat Genet 49, 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Meneses Fujii, T.M., Norde, M.M., Fisberg, R.M., Marchioni, D.M.L., Ordovás, J.M., and Rogero, M.M. (2020). FADS1 and ELOVL2 polymorphisms reveal associations for differences in lipid metabolism in a cross-sectional population-based survey of Brazilian men and women. Nutr Res 78, 42–49.

    Article  Google Scholar 

  • Freeman, G., Cowling, B.J., and Schooling, C.M. (2013). Power and sample size calculations for Mendelian randomization studies using one genetic instrument. Int J Epidemiol 42, 1157–1163.

    Article  PubMed  Google Scholar 

  • Gallagher, M.D., and Chen-Plotkin, A.S. (2018). The post-GWAS era: from association to function. Am J Hum Genet 102, 717–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V., Aquino-Michaels, K., Carroll, R.J., Eyler, A.E., Denny, J.C., Nicolae, D.L., Cox, N.J., et al. (2015). A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47, 1091–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C., and Plagnol, V. (2014). Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10, e1004383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giambartolomei, C., Zhenli Liu, J., Zhang, W., Hauberg, M., Shi, H., Boocock, J., Pickrell, J., Jaffe, A.E., The CommonMind Consortium, Pasaniuc, B., et al. (2018). A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics 34, 2538–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason, K.J., Yang, F., Pierce, B.L., He, X., and Chen, L.S. (2020). Primo: integration of multiple GWAS and omics QTL summary statistics for elucidation of molecular mechanisms of trait-associated SNPs and detection of pleiotropy in complex traits. Genome Biol 21, 236.

    Article  PubMed  PubMed Central  Google Scholar 

  • GTEx Consortium, Ardlie, K.G., Deluca, D.S., Segrè, A.V., Sullivan, T.J., Young, T.R., Gelfand, E.T., Trowbridge, C.A., Maller, J.B., Tukiainen, T., et al. (2015). The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660.

    Article  PubMed Central  Google Scholar 

  • Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W.J.H., Jansen, R., de Geus, E.J.C., Boomsma, D.I., Wright, F.A., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48, 245–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, X., Fuller, C.K., Song, Y., Meng, Q., Zhang, B., Yang, X., and Li, H. (2013). Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am J Hum Genet 92, 667–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B., and Eskin, E. (2014). Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hormozdiari, F., van de Bunt, M., Segrè, A.V., Li, X., Joo, J.W.J., Bilow, M., Sul, J.H., Sankararaman, S., Pasaniuc, B., and Eskin, E. (2016). Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet 99, 1245–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S.M., Yu, Z., Li, B., Gu, J., Muchnik, S., et al. (2019). A statistical framework for cross-tissue transcriptome-wide association analysis. Nat Genet 51, 568–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hukku, A., Pividori, M., Luca, F., Pique-Regi, R., Im, H.K., and Wen, X. (2021). Probabilistic colocalization of genetic variants from complex and molecular traits: promise and limitations. Am J Hum Genet 108, 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N.P., Rieder, M.J., Cooper, G.M., Roos, C., Voight, B.F., Havulinna, A.S., et al. (2008). Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40, 189–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathiresan, S., Willer, C.J., Peloso, G.M., Demissie, S., Musunuru, K., Schadt, E.E., Kaplan, L., Bennett, D., Li, Y., Tanaka, T., et al. (2009). Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41, 56–65.

    Article  CAS  PubMed  Google Scholar 

  • Legault, M.A., Perreault, L.P.L., Tardif, J.C., and Dubé, M.P. (2022). ExPheWas: a platform for cis-Mendelian randomization and gene-based association scans. Nucleic Acids Res 50, W305–W311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S. (2017). Mendelian randomization when many instruments are invalid: hierarchical empirical Bayes estimation. arXiv 1706.01389.

  • Li, B., and Ritchie, M.D. (2021). From GWAS to gene: transcriptome-wide association studies and other methods to functionally understand GWAS discoveries. Front Genet 12, 713230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Zeng, P., Xue, F., Yuan, Z., and Zhou, X. (2021). Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization. Am J Hum Genet 108, 240–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luningham, J.M., Chen, J., Tang, S., De Jager, P.L., Bennett, D.A., Buchman, A.S., and Yang, J. (2020). Bayesian genome-wide TWAS method to leverage both cis- and trans-eQTL information through summary statistics. Am J Hum Genet 107, 714–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malina, S., Cizin, D., and Knowles, D.A. (2022). Deep Mendelian randomization: Investigating the causal knowledge of genomic deep learning models. PLoS Comput Biol 18, e1009880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso, N., Freund, M.K., Johnson, R., Shi, H., Kichaev, G., Gusev, A., and Pasaniuc, B. (2019). Probabilistic fine-mapping of transcriptome-wide association studies. Nat Genet 51, 675–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso, N., Shi, H., Goddard, P., Kichaev, G., Gusev, A., and Pasaniuc, B. (2017). Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am J Hum Genet 100, 473–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marigorta, U.M., Denson, L.A., Hyams, J.S., Mondal, K., Prince, J., Walters, T.D., Griffiths, A., Noe, J.D., Crandall, W.V., Rosh, J.R., et al. (2017). Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease. Nat Genet 49, 1517–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal, S., Meng, X., Epstein, M.P., Tsoi, L.C., Patrick, M., Gibson, G., De Jager, P.L., Bennett, D.A., Wingo, A.P., Wingo, T.S., et al. (2019). TIGAR: an improved Bayesian tool for transcriptomic data imputation enhances gene mapping of complex traits. Am J Hum Genet 105, 258–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nica, A.C., Montgomery, S.B., Dimas, A.S., Stranger, B.E., Beazley, C., Barroso, I., and Dermitzakis, E.T. (2010). Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet 6, e1000895.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E., and Cox, N.J. (2010). Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6, e1000888.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ongen, H., Brown, A.A., Delaneau, O., Panousis, N.I., Nica, A.C., and Dermitzakis, E. T. (2017). Estimating the causal tissues for complex traits and diseases. Nat Genet 49, 1676–1683.

    Article  CAS  PubMed  Google Scholar 

  • Pasaniuc, B., and Price, A.L. (2017). Dissecting the genetics of complex traits using summary association statistics. Nat Rev Genet 18, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Pasaniuc, B., Zaitlen, N., Shi, H., Bhatia, G., Gusev, A., Pickrell, J., Hirschhorn, J., Strachan, D.P., Patterson, N., and Price, A.L. (2014). Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y., and Lu, Z. (2023). Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Sci China Life Sci 66, 819–834.

    Article  CAS  PubMed  Google Scholar 

  • Pickrell, J.K., Berisa, T., Liu, J.Z., Ségurel, L., Tung, J.Y., and Hinds, D.A. (2016). Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 48, 709–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pividori, M., Rajagopal, P.S., Barbeira, A., Liang, Y., Melia, O., Bastarache, L., Park, Y. S., Consortium, G., Wen, X., and Im, H.K. (2020). PhenomeXcan: Mapping the genome to the phenome through the transcriptome. Sci Adv 6, eaba2083.

    Article  CAS  PubMed  Google Scholar 

  • Qi, G., and Chatterjee, N. (2019). Mendelian randomization analysis using mixture models forrobust and efficient estimation ofcausal effects. Nat Commun 10, 1941.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schadt, E.E., Molony, C., Chudin, E., Hao, K., Yang, X., Lum, P.Y., Kasarskis, A., Zhang, B., Wang, S., Suver, C., et al. (2008). Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6, e107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, X., Chai, X., Yang, Y., Cheng, Q., Jiao, Y., Chen, H., Huang, J., Yang, C., and Liu, J. (2020). A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies. Nucleic Acids Res 48, e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin, M. (2008). Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9, 477–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachmazidou, I., Hatzikotoulas, K., Southam, L., Esparza-Gordillo, J., Haberland, V., Zheng, J., Johnson, T., Koprulu, M., Zengini, E., Steinberg, J., et al. (2019). Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet 51, 230–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M., Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J., et al. (2010). Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, S., Huangfu, L., Ai, S., Zheng, J., Shi, L., Yan, W., Zhu, X., Wang, Q., Deng, J., Bao, Y., et al. (2023). Causal relationships between chronotype and risk of multiple cancers by using longitudinal data and Mendelian randomization analysis. Sci China Life Sci 66, 2433–2436.

    Article  PubMed  Google Scholar 

  • van Rheenen, W., van der Spek, R.A.A., Bakker, M.K., van Vugt, J.J.F.A., Hop, P.J., Zwamborn, R.A.J., de Klein, N., Westra, H.J., Bakker, O.B., Deelen, P., et al. (2021). Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 53, 1636–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbanck, M., Chen, C.Y., Neale, B., and Do, R. (2018). Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50, 693–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vervier, K., and Michaelson, J.J. (2016). SLINGER: large-scale learning for predicting gene expression. Sci Rep 6, 1–5.

    Article  Google Scholar 

  • Vosa, U., Claringbould, A., Westra, H.J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Yazar, S., et al. (2021). Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet 53, 1300–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A.N., Knowles, D.A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., et al. (2019). Opportunities and challenges for transcriptome-wide association studies. Nat Genet 51, 592–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace, C. (2020). Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet 16, e1008720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace, C. (2021). A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet 17, e1009440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678.

    Article  Google Scholar 

  • Wen, X., Pique-Regi, R., and Luca, F. (2017). Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet 13, e1006646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willer, C.J., Schmidt, E.M., Sengupta, S. (2013). Discovery and refinement of loci associated with lipid levels. Nature Genetics 45, 1274–1283, doi: https://doi.org/10.1038/ng.2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Zeng, J., Zhang, F., Zhu, Z., Qi, T., Zheng, Z., Lloyd-Jones, L.R., Marioni, R.E., Martin, N.G., Montgomery, G.W., et al. (2018). Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun 9, 918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., Wu, C., Wei, P., and Pan, W. (2017). A powerful framework for integrating eQTL and GWAS summary data. Genetics 207, 893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, D.W., O’Connor, L.J., Price, A.L., and Gusev, A. (2020). Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat Genet 52, 626–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Lee, T., Kim, J., Cho, M.C., Han, B.G., Lee, J.Y., Lee, H.Y., Cho, S., and Kim, H. (2013). Ubiquitous polygenicity of human complex traits: genome-wide analysis of 49 traits in Koreans. PLoS Genetics 9, e1003355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Shi, X., Jiao, Y., Huang, J., Chen, M., Zhou, X., Sun, L., Lin, X., Yang, C., and Liu, J. (2020). CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics 36, 2009–2016.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Wan, X., Lin, X., Chen, M., Zhou, X., and Liu, J. (2019). CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics 35, 1644–1652.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Z., Zhu, H., Zeng, P., Yang, S., Sun, S., Yang, C., Liu, J., and Zhou, X. (2020). Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. Nat Commun 11, 3861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, J.H., Stacey, D., Eriksson, N., Macdonald-Dunlop, E., Hedman, Å.K., Kalnapenkis, A., Enroth, S., Cozzetto, D., Digby-Bell, J., Marten, J., et al. (2023). Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol 24, 1540–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Wang, X., Yang, N., Zhu, X., Lu, Z., Cai, Y., Li, B., Zhu, Y., Li, X., Wei, Y., et al. (2024). Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks. Sci China Life Sci 67, 132–148.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Quick, C., Yu, K., Barbeira, A., Luca, F., Pique-Regi, R., Kyung Im, H., and Wen, X. (2020). PTWAS: investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. Genome Biol 21, 232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, J., Haberland, V., Baird, D., Walker, V., Haycock, P.C., Hurle, M.R., Gutteridge, A., Erola, P., Liu, Y., Luo, S., et al. (2020). Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet 52, 1122–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, D., Jiang, Y., Zhong, X., Cox, N.J., Liu, C., and Gamazon, E.R. (2020). A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis. Nat Genet 52, 1239–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., Montgomery, G. W., Goddard, M.E., Wray, N.R., Visscher, P.M., et al. (2016). Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., Robinson, M.R., McGrath, J.J., Visscher, P.M., Wray, N.R., et al. (2018). Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun 9, 224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, H., and Zhou, X. (2020). Transcriptome-wide association studies: a view from Mendelian randomization. Quant Biol 9, 107–121.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2022YFD1201504), the Fundamental Research Funds for the Central Universities (2662022YLYJ010, 2021ZKPY018, 2662021JC008, SZYJY2021003), the Major Project of Hubei Hongshan Laboratory (2022HSZD031), the Major Science and Technology Project of Hubei Province (2021AFB002), and the Yingzi Tech & Huazhong Agricultural University Intelligent Research Institute of Food Health (IRIFH202209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiao Liu.

Ethics declarations

The author(s) declare that they have no conflict of Interest.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, M., Li, Z. et al. An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2522-8

Navigation