Skip to main content
Log in

Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat (Triticum aestivum. L., BBAADD) is hypothesized to increase its adaptability and/or plasticity. However, the molecular basis of expression divergence remains unclear. Squamosa promoter-binding protein-like (SPL) transcription factors are critical for a wide array of biological processes. In this study, we constructed expression regulatory networks by combining DAP-seq for 40 SPLs, ATAC-seq, and RNA-seq. Our findings indicate that a group of low-affinity SPL binding regions (SBRs) were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif. The SBRs including the low-affinity ones are evolutionarily conserved, enriched GWAS signals related to important agricultural traits. However, those SBRs are highly diversified among the cis-regulatory regions (CREs) of syntenic genes, with less than 8% SBRs coexisting in triad genes, suggesting that CRE variations are critical for subgenome differentiations. Knocking out of TaSPL7A/B/D and TaSPL15A/B/D subfamily further proved that both high- and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes. Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All the raw sequencing data generated during the current study are available in the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo) under accession number GSE188724 and Genome Sequence Archive (https://bigd.big.ac.cn/gsa) under accession number PRJCA007017. Tracks for all sequencing data can be visualized through our local genome browser (http://49.233.173.230/JBrower/?data=triticum_aestivum).

References

  • Adamski, N.M., Simmonds, J., Brinton, J.F., Backhaus, A.E., Chen, Y., Smedley, M., Hayta, S., Florio, T., Crane, P., Scott, P., et al. (2021). Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. Plant Cell 33, 2296–2319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartlett, A., O’Malley, R.C., Huang, S.S.C., Galli, M., Nery, J.R., Gallavotti, A., and Ecker, J.R. (2017). Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc 12, 1659–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, C., Yu, Y., Dong, C., Yang, Y., Zhai, Y., Du, F., Xia, C., Ni, Z., Kong, X., and Zhang, L. (2021). The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat. Plant Biotechnol J 19, 209–211.

    Article  CAS  PubMed  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrill, P., Ramírez-González, R., and Uauy, C. (2016). expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170, 2172–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, J., Liu, K., Song, W., Zhang, J., Yao, Y., Xin, M., Hu, Z., Peng, H., Ni, Z., Sun, Q., et al. (2021). Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cary, G.A., Cheatle Jarvela, A.M., Francolini, R.D., and Hinman, V.F. (2017). Genome-wide use of high- and low-affinity Tbrain transcription factor binding sites during echinoderm development. Proc Natl Acad Sci USA 114, 5854–5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Mondragon, J.A., Jaeger, S., Thieffry, D., Thomas-Chollier, M., and van Helden, J. (2017). RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections. Nucl Acids Res 45, e119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crocker, J., Abe, N., Rinaldi, L., McGregor, A.P., Frankel, N., Wang, S., Alsawadi, A., Valenti, P., Plaza, S., Payre, F., et al. (2015). Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160, 191–203.

    Article  CAS  PubMed  Google Scholar 

  • Deplancke, B., Alpern, D., and Gardeux, V. (2016). The genetics of transcription factor DNA binding variation. Cell 166, 538–554.

    Article  CAS  PubMed  Google Scholar 

  • Galli, M., Khakhar, A., Lu, Z., Chen, Z., Sen, S., Joshi, T., Nemhauser, J.L., Schmitz, R.J., and Gallavotti, A. (2018). The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat Commun 9, 4526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, F., Lu, Q., and Cang, J. (2021). Genome-wide identification and expression profiling of the SPL family genes in wheat. Botany 99, 185–198.

    Article  CAS  Google Scholar 

  • Guo, X., and Han, F. (2014). Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell 26, 4311–4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, C., Jiao, C., Hou, J., Li, T., Liu, H., Wang, Y., Zheng, J., Liu, H., Bi, Z., Xu, F., et al. (2020). Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant 13, 1733–1751.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L.R., Xu, G., Chao, D.Y., Li, J., Wang, P.Y., Qin, F., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63, 635–674.

    Article  PubMed  Google Scholar 

  • International Wheat Genome Sequencing, C., investigators, I.R.p., Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., investigators, I.w.-g.a.p., Pozniak, C.J., et al. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361.

  • Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., et al. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, W., Yuan, J., Jiang, S., Liu, Y., Wang, L., Liu, M., Zheng, D., Ye, W., Wang, X., and Chen, Z.J. (2018). Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. Plant J 93, 828–842.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Kan, C.C., Jia, H., Powers, C., Carver, B.F., and Yan, L. (2020). Genetic characterization and deployment of a major gene for grain yield on chromosome arm 1BS in winter wheat. Mol Breeding 40, 26.

    Article  CAS  Google Scholar 

  • Kaplan, N., Moore, I.K., Fondufe-Mittendorf, Y., Gossett, A.J., Tillo, D., Field, Y., LeProust, E.M., Hughes, T.R., Lieb, J.D., Widom, J., et al. (2009). The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366.

    Article  CAS  PubMed  Google Scholar 

  • Kong, X., Wang, F., Geng, S., Guan, J., Tao, S., Jia, M., Sun, G., Wang, Z., Wang, K., Ye, X., et al. (2022). The wheat AGL6 -like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnol J 20, 75–88.

    Article  CAS  PubMed  Google Scholar 

  • Kropat, J., Tottey, S., Birkenbihl, R.P., Depège, N., Huijser, P., and Merchant, S. (2005). A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci USA 102, 18730–18735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, X., Stigliani, A., Lucas, J., Hugouvieux, V., Parcy, F., and Zubieta, C. (2020). Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. Nucl Acids Res 48, 9637–9648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L., Shi, F., Wang, Y., Yu, X., Zhi, J., Guan, Y., Zhao, H., Chang, J., Chen, M., Yang, G., et al. (2020). TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.). Plant Sci 296, 110516.

    Article  CAS  PubMed  Google Scholar 

  • Liu, A., and Bergmann, D.C. (2021). How to build a crop plant: defining the cis-regulatory landscape of maize. Cell 184, 2804–2806.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Chen, Z., Wang, Z., Zhang, Z., Xie, X., Wang, Z., Chai, L., Song, L., Cheng, X., Feng, M., et al. (2021). Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. Mol Plant 14, 1472–1488.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Cheng, X., Liu, P., and Sun, J. (2017). miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol 174, 1931–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, K., Cao, J., Yu, K., Liu, X., Gao, Y., Chen, Q., Zhang, W., Peng, H., Du, J., Xin, M., et al. (2019). Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol 181, 179–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Harberd, N.P., and Fu, X. (2016). SQUAMOSA promoter binding protein-like transcription factors: targets for improving cereal grain yield. Mol Plant 9, 765–767.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Lee, C.K., Granek, J.A., Clarke, N.D., and Lieb, J.D. (2006). Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res 16, 1517–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Yu, H., Xiong, G., Wang, J., Jiao, Y., Liu, G., Jing, Y., Meng, X., Hu, X., Qian, Q., et al. (2013). Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Hofmeister, B.T., Vollmers, C., DuBois, R.M., and Schmitz, R.J. (2017). Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucl Acids Res 45, e41.

    Article  PubMed  Google Scholar 

  • Maher, K.A., Bajic, M., Kajala, K., Reynoso, M., Pauluzzi, G., West, D.A., Zumstein, K., Woodhouse, M., Bubb, K., Dorrity, M.W., et al. (2018). Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules. Plant Cell 30, 15–36.

    Article  CAS  PubMed  Google Scholar 

  • Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., and Seymour, G.B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38, 948–952.

    Article  CAS  PubMed  Google Scholar 

  • Marand, A.P., Chen, Z., Gallavotti, A., and Schmitz, R.J. (2021). A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055.e21.

    Article  CAS  PubMed  Google Scholar 

  • Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., and Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42, 545–549.

    Article  CAS  PubMed  Google Scholar 

  • Monroe, J.G., Srikant, T., Carbonell-Bejerano, P., Becker, C., Lensink, M., Exposito-Alonso, M., Klein, M., Hildebrandt, J., Neumann, M., Kliebenstein, D., et al. (2022). Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 602, 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Malley, R.C., Huang, S.S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeifer, M., Kugler, K.G., Sandve, S.R., Zhan, B., Rudi, H., Hvidsten, T.R., Mayer, K.F.X., and Olsen, O.A. (2014). Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345.

  • Pont, C., Leroy, T., Seidel, M., Tondelli, A., Duchemin, W., Armisen, D., Lang, D., Bustos-Korts, D., Goué, N., Balfourier, F., et al. (2019). Tracing the ancestry of modern bread wheats. Nat Genet 51, 905–911.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, D., Hu, W., Zhou, Y., Xiao, J., Hu, R., Wei, Q., Zhang, Y., Feng, J., Sun, F., Sun, J., et al. (2021). TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat. Plant Biotechnol J 19, 1588–1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn, J.M., Eriksson, M., Moseley, J.L., and Merchant, S. (2002). Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant Physiol 128, 463–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-González, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., et al. (2018). The transcriptional landscape of polyploid wheat. Science 361.

  • Ricci, W.A., Lu, Z., Ji, L., Marand, A.P., Ethridge, C.L., Murphy, N.G., Noshay, J.M., Galli, M., Mejía-Guerra, M.K., Colomé-Tatché, M., et al. (2019). Widespread long-range cis-regulatory elements in the maize genome. Nat Plants 5, 1237–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers-Melnick, E., Vera, D.L., Bass, H.W., and Buckler, E.S. (2016). Open chromatin reveals the functional maize genome. Proc Natl Acad Sci USA 113, E3177–3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9, 2395–2410.

    Article  CAS  PubMed  Google Scholar 

  • Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., Shangguan, Y., et al. (2016). OsSPL13 controls grain size in cultivated rice. Nat Genet 48, 447–456.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.S., Gill, B.S., and Faris, J.D. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, X., Lu, Z., Yu, H., Shao, G., Xiong, J., Meng, X., Jing, Y., Liu, G., Xiong, G., Duan, J., et al. (2017). IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27, 1128–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiezewski, S., Liu, F., Magusin, A., and Dean, C. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462, 799–802.

    Article  CAS  PubMed  Google Scholar 

  • Tian, X., Wen, W., Xie, L., Fu, L., Xu, D., Fu, C., Wang, D., Chen, X., Xia, X., Chen, Q., et al. (2017). Molecular Mapping of Reduced Plant Height Gene Rht24 in Bread Wheat. Front Plant Sci 8, 1379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tu, X., Mejía-Guerra, M.K., Valdes Franco, J.A., Tzeng, D., Chu, P.Y., Shen, W., Wei, Y., Dai, X., Li, P., Buckler, E.S., et al. (2020). Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat Commun 11, 5089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Peer, Y., Mizrachi, E., and Marchal, K. (2017). The evolutionary significance of polyploidy. Nat Rev Genet 18, 411–424.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., and Wang, H. (2015). The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol Plant 8, 677–688.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Yu, H., Xiong, G., Lu, Z., Jiao, Y., Meng, X., Liu, G., Chen, X., Wang, Y., and Li, J. (2017a). Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29, 697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Zhou, L., Shi, H., Chern, M., Yu, H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., et al. (2018). A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Zhuang, J., Iyer, S., Lin, X.Y., Whitfield, T.W., Greven, M.C., Pierce, B.G., Dong, X., Kundaje, A., Cheng, Y., et al. (2012a). Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22, 1798–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Li, Z., Zhang, Y.’., Zhang, Y., Xie, Y., Ye, L., Zhuang, Y., Lin, K., Zhao, F., Guo, J., et al. (2021). An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell 33, 865–881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q., et al. (2012b). Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44, 950–954.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32, 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X., and Jiao, Y. (2017b). Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol 175, 746–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, H., Zhao, Y., Xie, Y., and Wang, H. (2018). Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. J Exp Bot, doi: https://doi.org/10.1093/jxb/ery258.

  • Xie, L., Zhang, Y., Wang, K., Luo, X., Xu, D., Tian, X., Li, L., Ye, X., Xia, X., Li, W., et al. (2021). TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytol 231, 834–848.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, A., Wu, M.F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D. (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17, 268–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100, 6263–6268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, X.F., Zhao, L., Ren, Y., Dong, Z.D., Cui, D.Q., and Chen, F. (2019). Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Sci Rep-Uk 9.

  • Yang, C., Yang, Z., Zhao, L., Sun, F., and Liu, B. (2018). A newly formed hexaploid wheat exhibits immediate higher tolerance to nitrogen-deficiency than its parental lines. BMC Plant Biol 18, 113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zander, M., Lewsey, M.G., Clark, N.M., Yin, L., Bartlett, A., Saldierna Guzmán, J.P., Hann, E., Langford, A.E., Jow, B., Wise, A., et al. (2020). Integrated multi-omics framework of the plant response to jasmonic acid. Nat Plants 6, 290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Xu, W., Liu, X., Mao, X., Li, A., Wang, J., Chang, X., Zhang, X., and Jing, R. (2017a). Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-Box genes governing yield-related traits in hexaploid wheat. Plant Physiol 174, 1177–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Zhu, B., Qi, B., Gou, X., Dong, Y., Xu, C., Zhang, B., Huang, W., Liu, C., Wang, X., et al. (2014). Evolution of the BBAA component of bread wheat during its history at the allohexaploid level. Plant Cell 26, 2761–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Yu, H., Ma, B., Liu, G., Wang, J., Wang, J., Gao, R., Li, J., Liu, J., Xu, J., et al. (2017b). A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8, 14789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.F., Yang, C.Y., Lin, H.X., Wang, J.W., and Xue, H.W. (2021a). Rice SPL12 coevolved with GW5 to determine grain shape. Sci Bull 66, 2353–2357.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, Z., Zhang, Y., Lin, K., Peng, Y., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Guo, J., et al. (2021b). Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Res 31, 2276–2289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B. E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Xiao, J., Wu, J., Zhang, H., Liu, G., Wang, X., and Dai, L. (2012). ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun 419, 779–781.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Xie, P., Guan, P., Wang, Y., Li, Y., Yu, K., Xin, M., Hu, Z., Yao, Y., Ni, Z., et al. (2019). Btr1-A induces grain shattering and affects spike morphology and yield-related traits in wheat. Plant Cell Physiol 60, 1342–1353.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Y., Wang, Y.G., et al. (2020). Triticum population sequencing provides insights into wheat adaptation. Nat Genet 52, 1412–1422.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Central Public-interest Scientific Institution Basic Research Found (S2022ZD02), the Excellent Young Scientists Fund (Overseas) of National Natural Science Foundation of China, the Fundamental Research Funds from the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (S2020YC07, S2021YC03), the Major Basic Research Program of Shandong Natural Science Foundation (ZR2019ZD15) and the Top Talents Program “One Case One Discussion (Yishiyiyi)” of Shandong Province, China. We would like to acknowledge Prof. Robert J. Schmitz from the University of Georgia for revising the manuscript and Ting Li from the Flow Cytometry Core of the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, for the help with the nuclear sorting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghong Wang or Zefu Lu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, H., Teng, W., Gao, L. et al. Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Sci. China Life Sci. 66, 819–834 (2023). https://doi.org/10.1007/s11427-022-2202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2202-3

Navigation