Skip to main content
Log in

Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations

  • Research Paper
  • From CAS & CAE Members
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Naturally occurring structural variations (SVs) are a considerable source of genomic variation that can reshape the 3D architecture of chromosomes. Controllable methods aimed at introducing the complex SVs and their related molecular mechanisms have remained farfetched. In this study, an SV-prone yeast strain was developed using Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) technology with two synthetic chromosomes, namely synV and synX. The biosynthesis of astaxanthin is used as a readout and a proof of concept for the application of SVs in industries. Our findings showed that complex SVs, including a pericentric inversion and a trans-chromosome translocation between synV and synX, resulted in two neo-chromosomes and a 2.7-fold yield of astaxanthin. Also, genetic targets were mapped, which resulted in a higher astaxanthin yield, thus demonstrating the SVs’ ability to reorganize genetic information along the chromosomes. The rational design of trans-chromosome translocation and pericentric inversion enabled precise induction of these phenomena. Collectively, this study provides an effective tool to not only accelerate the directed genome evolution but also to reveal the mechanistic insight of complex SVs for altering phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akdemir, K.C., Le, V.T., Chandran, S., Li, Y., Verhaak, R.G., Beroukhim, R., Campbell, P.J., Chin, L., Dixon, J. R., and Futreal, P.A. (2020). Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat Genet 52, 294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambati, R.R., Phang, S.M., Ravi, S., and Aswathanarayana, R.G. (2014). Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12, 128–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai, Q., Cheng, S., Zhang, J., Li, M., Cao, Y., and Yuan, Y. (2021). Establishment of genomic library technology mediated by nonhomologous end joining mechanism in Yarrowia lipolytica. Sci China Life Sci 64, 2114–2128.

    Article  CAS  PubMed  Google Scholar 

  • Bianco, S., Lupiáñez, D.G., Chiariello, A.M., Annunziatella, C., Kraft, K., Schöpflin, R., Wittler, L., Andrey, G., Vingron, M., Pombo, A., et al. (2018). Polymer physics predicts the effects of structural variants on chromatin architecture. Nat Genet 50, 662–667.

    Article  CAS  PubMed  Google Scholar 

  • Blount, B.A., Gowers, G.O.F., Ho, J.C.H., Ledesma-Amaro, R., Jovicevic, D., McKiernan, R.M., Xie, Z.X., Li, B.Z., Yuan, Y.J., and Ellis, T. (2018). Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9, 1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker Brachmann, C., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.

    Article  Google Scholar 

  • Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., and Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31, 1119–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Z., Ma, Y., Jia, B., and Yuan, Y.J. (2022). Mobile CRISPR-Cas9 based anti-phage system in E. coli. Front Chem Sci Eng doi: https://doi.org/10.1007/s11705-022-2141-7.

  • Chen, X., and Zhang, J. (2016). The genomic landscape of position effects on protein expression level and noise in yeast. Cell Syst 2, 347–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry, J.M., Hong, E.L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E.T., Christie, K.R., Costanzo, M.C., Dwight, S.S., Engel, S.R., et al. (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40, D700–D705.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, S., Baradaran-Mashinchi, P., and Torres, M.P. (2018). Negative feedback phosphorylation of Gγ subunit Ste18 and the Ste5 scaffold synergistically regulates MAPK activation in yeast. Cell Rep 23, 1504–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T.D., Barnes, C., Campbell, P., et al. (2010). Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712.

    Article  CAS  PubMed  Google Scholar 

  • Darling, A.E., Miklós, I., and Ragan, M.A. (2008). Dynamics of genome rearrangement in bacterial populations. PLoS Genet 4, e1000128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekker, J., Marti-Renom, M.A., and Mirny, L.A. (2013). Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14, 390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y.J., Lee, C., Shendure, J., Fields, S., Blau, C.A., and Noble, W.S. (2010). A three-dimensional model of the yeast genome. Nature 465, 363–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujon, B. (2010). Yeast evolutionary genomics. Nat Rev Genet 11, 512–524.

    Article  CAS  PubMed  Google Scholar 

  • Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., Marck, C., Neuvéglise, C., Talla, E., et al. (2004). Genome evolution in yeasts. Nature 430, 35–44.

    Article  PubMed  Google Scholar 

  • Eyüpoğlu, D., Bozkurt, S., Haznedaroğlu, İ., Büyükaşık, Y., and Güven, D. (2016). The impact of variant philadelphia chromosome translocations on the clinical course of chronic myeloid leukemia. Turk J Haematol 33, 60–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flagfeldt, D.B., Siewers, V., Huang, L., and Nielsen, J. (2009). Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26, 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Fleiss, A., O’Donnell, S., Fournier, T., Lu, W., Agier, N., Delmas, S., Schacherer, J., and Fischer, G. (2019). Reshuffling yeast chromosomes with CRISPR/Cas9. PLoS Genet 15, e1008332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gietz, R.D., Schiestl, R.H., Willems, A.R., and Woods, R.A. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Gowers, G.O.F., Chee, S.M., Bell, D., Suckling, L., Kern, M., Tew, D., McClymont, D.W., and Ellis, T. (2020). Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nat Commun 11, 868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harewood, L., Kishore, K., Eldridge, M.D., Wingett, S., Pearson, D., Schoenfelder, S., Collins, V.P., and Fraser, P. (2017). Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol 18, 11.

    Article  CAS  Google Scholar 

  • Henssen, A.G., Koche, R., Zhuang, J., Jiang, E., Reed, C., Eisenberg, A., Still, E., MacArthur, I.C., Rodríguez-Fos, E., Gonzalez, S., et al. (2017). PGBD5 promotes site-specific oncogenic mutations in human tumors. Nat Genet 49, 1005–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igielska-Kalwat, J., Gościańska, J., and Nowak, I. (2015). Carotenoids as natural antioxidants. Postepy Hig Med Dosw 69, 418–428.

    Article  Google Scholar 

  • Ignatovich, O., Cooper, M., Kulesza, H.M., and Beggs, J.D. (1995). Cloning and characterisation of the gene encoding the ribosomal protien S5 (also known as rp14, S2, YS8) of Saccharomyces cerevisiae. Nucl Acids Res 23, 4616–4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R., Dekker, J., and Mirny, L.A. (2012). Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9, 999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, B., Wu, Y., Li, B.Z., Mitchell, L.A., Liu, H., Pan, S., Wang, J., Zhang, H.R., Jia, N., Li, B., et al. (2018). Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun 9, 1933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, G.Z., Yao, M.D., Wang, Y., Zhou, L., Song, T.Q., Liu, H., Xiao, W. H., and Yuan, Y.J. (2017). Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metab Eng 41, 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, S., Tang, Y., Xiang, L., Zhu, X., Cai, Z., Li, L., Chen, Y., Chen, P., Feng, Y., Lin, X., et al. (2021). Efficient de novo assembly and modification of large DNA fragments. Sci China Life Sci doi: https://doi.org/10.1007/s11427-021-2029-0.

  • Jin, J., Wang, Y., Yao, M., Gu, X., Li, B., Liu, H., Ding, M., Xiao, W., and Yuan, Y. (2018). Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. Biotechnol Biofuels 11, 230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidd, J.M., Cooper, G.M., Donahue, W.F., Hayden, H.S., Sampas, N., Graves, T., Hansen, N., Teague, B., Alkan, C., Antonacci, F., et al. (2008). Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008). SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Wu, Y., Ma, L., Guo, Z., Xiao, W., and Yuan, Y. (2019). Loss of heterozygosity by SCRaMbLEing. Sci China Life Sci 62, 381–393.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Luo, Z., Wang, Y., Pham, N.T., Tuck, L., Pérez-Pi, I., Liu, L., Shen, Y., French, C., Auer, M., et al. (2018). Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat Commun 9, 1936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, Z., Wang, L., Wang, Y., Zhang, W., Guo, Y., Shen, Y., Jiang, L., Wu, Q., Zhang, C., Cai, Y., et al. (2018). Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun 9, 1930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, L., Li, Y., Chen, X., Ding, M., Wu, Y., and Yuan, Y.J. (2019). SCRaMbLE generates evolved yeasts with increased alkali tolerance. Microb Cell Fact 18, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Natesuntorn, W., Iwami, K., Matsubara, Y., Sasano, Y., Sugiyama, M., Kaneko, Y., and Harashima, S. (2015). Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci Rep 5, 12510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa, M., Ichiyama, T., Hayashi, T., and Furukawa, S. (1997). Möbius-like syndrome associated with a 1;2 chromosome translocation. Clin Genet 51, 122–123.

    Article  CAS  PubMed  Google Scholar 

  • Paddon, C.J., and Keasling, J.D. (2014). Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12, 355–367.

    Article  CAS  PubMed  Google Scholar 

  • Pang, A.W., MacDonald, J.R., Pinto, D., Wei, J., Rafiq, M.A., Conrad, D.F., Park, H., Hurles, M.E., Lee, C., Venter, J.C., et al. (2010). Towards a comprehensive structural variation map of an individual human genome. Genome Biol 11, R52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peter, J., De Chiara, M., Friedrich, A., Yue, J.X., Pflieger, D., Bergström, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., et al. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevzner, P., and Tesler, G. (2003). Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Res 13, 37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poddar, A., Roy, N., and Sinha, P. (1999). MCM21 and MCM22, two novel genes of the yeast Saccharomyces cerevisiae are required for chromosome transmission. Mol Microbiol 31, 349–360.

    Article  CAS  PubMed  Google Scholar 

  • Puddu, F., Herzog, M., Selivanova, A., Wang, S., Zhu, J., Klein-Lavi, S., Gordon, M., Meirman, R., Millan-Zambrano, G., Ayestaran, I., et al. (2019). Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature 573, 416–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., et al. (2006). Global variation in copy number in the human genome. Nature 444, 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickman, D.S., Soong, T.D., Moss, B., Mosquera, J.M., Dlabal, J., Terry, S., MacDonald, T.Y., Tripodi, J., Bunting, K., Najfeld, V., et al. (2012). Oncogene-mediated alterations in chromatin conformation. Proc Natl Acad Sci USA 109, 9083–9088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba, A.E., Westermann, A.J., Gorski, S.A., and Vogel, J. (2014). Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42, 8845–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmecki, A.M., Maruvka, Y.E., Richmond, P.A., Guillet, M., Shoresh, N., Sorenson, A.L., De, S., Kishony, R., Michor, F., Dowell, R., et al. (2015). Polyploidy can drive rapid adaptation in yeast. Nature 519, 349–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, M.J., Wu, Y., Yang, K., Li, Y., Xu, H., Zhang, H., Li, B.Z., Li, X., Xiao, W.H., Zhou, X., et al. (2018). Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun 9, 1934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, B., Ma, T., Ye, Z., Li, X., Huang, Y., Zhou, Z., Ding, Y., Deng, Z., and Liu, T. (2019). Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction. J Agric Food Chem 67, 11148–11157.

    Article  CAS  PubMed  Google Scholar 

  • Si, T., Xiao, H., and Zhao, H. (2015). Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol Adv 33, 1420–1432.

    Article  CAS  PubMed  Google Scholar 

  • Sotoudeh, A., Rostami, P., Nakhaeimoghadam, M., Mohsenipour, R. and Rezaei, N. (2017). Pericentric inversion of chromosome 9 in an infant with ambiguous genitalia. Acta Med Iran 55, 655–657.

    PubMed  Google Scholar 

  • Wang, J., Jia, B., Xie, Z., Li, Y., and Yuan, Y. (2018). Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles. Front Chem Sci Eng 12, 806–814.

    Article  CAS  Google Scholar 

  • Wang, R., Gu, X., Yao, M., Pan, C., Liu, H., Xiao, W., Wang, Y., and Yuan, Y. (2017). Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae. Front Chem Sci Eng 11, 89–99.

    Article  CAS  Google Scholar 

  • Wu, X.L., Li, B.Z., Zhang, W.Z., Song, K., Qi, H., Dai, J.B., and Yuan, Y.J. (2017a). Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae. Biotechnol Biofuels 10, 189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, Y., Li, B.Z., Zhao, M., Mitchell, L.A., Xie, Z.X., Lin, Q.H., Wang, X., Xiao, W.H., Wang, Y., Zhou, X., et al. (2017b). Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, 7.

    Google Scholar 

  • Wu, Y., Zhu, R.Y., Mitchell, L.A., Ma, L., Liu, R., Zhao, M., Jia, B., Xu, H., Li, Y.X., Yang, Z.M., et al. (2018). In vitro DNA SCRaMbLE. Nat Commun 9, 1935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, Z.X., Liu, D., Li, B.Z., Zhao, M., Zeng, B.X., Wu, Y., Shen, Y., Lin, T., Yang, P., Dai, J., et al. (2017a). Design and chemical synthesis of eukaryotic chromosomes. Chem Soc Rev 46, 7191–7207.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Z.X., Li, B.Z., Mitchell, L.A., Wu, Y., Qi, X., Jin, Z., Jia, B., Wang, X., Zeng, B.X., Liu, H.M., et al. (2017b). “Perfect” designer chromosome V and behavior of a ring derivative. Science 355, 8.

    Article  Google Scholar 

  • Xu, H., Han, M., Zhou, S., Li, B.Z., Wu, Y., and Yuan, Y.J. (2020). Chromosome drives via CRISPR-Cas9 in yeast. Nat Commun 11, 4344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue, J.X., Li, J., Aigrain, L., Hallin, J., Persson, K., Oliver, K., Bergström, A., Coupland, P., Warringer, J., Lagomarsino, M.C., et al. (2017). Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat Genet 49, 913–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z.Y., Liao, D.N., Ma, Y.X., Jia, B., and Yuan, Y.J. (2022). Orthogonality of redesigned tRNA molecules with three stop codons. Chin J Chem 40, 825–831.

    Article  CAS  Google Scholar 

  • Zhou, P., Ye, L., Xie, W., Lv, X., and Yu, H. (2015). Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Appl Microbiol Biotechnol 99, 8419–8428.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, the National Key Research and Development Program of China (2021YFC2100800), and the National Natural Science Foundation of China (31800719, 31861143017, and 21621004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjin Yuan.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Jin, J., Han, M. et al. Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations. Sci. China Life Sci. 65, 1703–1717 (2022). https://doi.org/10.1007/s11427-021-2084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2084-1

Keywords

Navigation