Skip to main content
Log in

Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous scaffolds for bone tissue engineering

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Recently tremendous progress has been evidenced by the advancements in developing innovative three-dimensional (3D) scaffolds using various techniques for addressing the autogenous grafting of bone. In this work, we demonstrated the fabrication of porous polycaprolactone (PCL) scaffolds for osteogenic differentiation based on supercritical fluid-assisted hybrid processes of phase inversion and foaming. This eco-friendly process resulted in the highly porous biomimetic scaffolds with open and interconnected architectures. Initially, a 23 factorial experiment was designed for investigating the relative significance of various processing parameters and achieving better control over the porosity as well as the compressive mechanical properties of the scaffold. Then, single factor experiment was carried out to understand the effects of various processing parameters on the morphology of scaffolds. On the other hand, we encapsulated a growth factor, i.e., bone morphogenic protein-2 (BMP-2), as a model protein in these porous scaffolds for evaluating their osteogenic differentiation. In vitro investigations of growth factor loaded PCL scaffolds using bone marrow stromal cells (BMSCs) have shown that these growth factor-encumbered scaffolds were capable of differentiating the cells over the control experiments. Furthermore, the osteogenic differentiation was confirmed by measuring the cell proliferation, and alkaline phosphatase (ALP) activity, which were significantly higher demonstrating the active bone growth. Together, these results have suggested that the fabrication of growth factor-loaded porous scaffolds prepared by the eco-friendly hybrid processing efficiently promoted the osteogenic differentiation and may have a significant potential in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, J., Teoh, J.E.M., Suntornnond, R., and Chua, C.K. (2015). Design and 3D printing of scaffolds and tissues. Engineering 1, 261–268.

    Google Scholar 

  • Autissier, A., Le Visage, C., Pouzet, C., Chaubet, F., and Letourneur, D. (2010). Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater 6, 3640–3648.

    CAS  PubMed  Google Scholar 

  • Brydone, A.S., Meek, D., and Maclaine, S. (2010). Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H 224, 1329–1343.

    CAS  PubMed  Google Scholar 

  • Cabraja, M. and Kroppenstedt, S. (2012). Bone grafting and substitutes in spine surgery. J Neurosurg Sci 56, 87–95.

    CAS  PubMed  Google Scholar 

  • Cai, Y., Tong, S., Zhang, R., Zhu, T., and Wang, X. (2018). In vitro evaluation of a bone morphogenetic protein-2 nanometer hydroxyapatite collagen scaffold for bone regeneration. Mol Med Report 17, 5830.

    CAS  Google Scholar 

  • Cao, Z., Wang, D., Li, Y., Xie, W., Wang, X., Tao, L., Wei, Y., Wang, X., and Zhao, L. (2018). Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Sci China Life Sci 61, 448–456.

    CAS  PubMed  Google Scholar 

  • Chen, B., Kankala, R.K., Chen, A., Yang, D., Cheng, X., Jiang, N., Zhu, K., and Wang, S. (2017). Investigation of silk fibroin nanoparticledecorated poly(L-lactic acid) composite scaffolds for osteoblast growth and differentiation. Int J Nanomed 12, 1877–1890.

    CAS  Google Scholar 

  • Chen, C., Liu, Q., Xin, X., Guan, Y., and Yao, S. (2016). Pore formation of poly(ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming. J Supercrit Fluids 117, 279–288.

    CAS  Google Scholar 

  • Choudhury, M., Mohanty, S., and Nayak, S. (2015). Effect of different solvents in solvent casting of porous pla scaffolds—in biomedical and tissue engineering applications. J Biomater Tissue Eng 5, 1–9.

    Google Scholar 

  • Custódio, C.A., Reis, R.L., and Mano, J.F. (2014). Engineering biomolecular microenvironments for cell instructive biomaterials. Adv Healthc Mater 3, 797–810.

    PubMed  Google Scholar 

  • Davies, O.R., Lewis, A.L., Whitaker, M.J., Tai, H., Shakesheff, K.M., and Howdle, S.M. (2008). Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliver Rev 60, 373–387.

    CAS  Google Scholar 

  • Delmote, J., Teruel-Biosca, L., Gómez Ribelles, J.L., and Gallego Ferrer, G. (2017). Emulsion based microencapsulation of proteins in poly(Llactic acid) films and membranes for the controlled release of drugs. Polym Degrad Stabil 146, 24–33.

    CAS  Google Scholar 

  • de Matos, M.B.C., Piedade, A.P., Alvarez-Lorenzo, C., Concheiro, A., Braga, M.E.M., and de Sousa, H.C. (2013). Dexamethasone-loaded poly(-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Int J Pharm 456, 269–281.

    CAS  PubMed  Google Scholar 

  • de Matos, M.B.C., Puga, A.M., Alvarez-Lorenzo, C., Concheiro, A., Braga, M.E.M., and de Sousa, H.C. (2015). Osteogenic poly(ε-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. Int J Pharm 479, 11–22.

    CAS  PubMed  Google Scholar 

  • Declercq, H.A., Desmet, T., Berneel, E.E.M., Dubruel, P., and Cornelissen, M.J. (2013). Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering. Acta Biomater 9, 7699–7708.

    CAS  PubMed  Google Scholar 

  • Deng, A., Chen, A., Wang, S., Li, Y., Liu, Y., Cheng, X., Zhao, Z., and Lin, D. (2013). Porous nanostructured poly-L-lactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles. J Supercrit Fluids 77, 110–116.

    CAS  Google Scholar 

  • Diaz-Gomez, L., Concheiro, A., Alvarez-Lorenzo, C., and García-González, C.A. (2016a). Growth factors delivery from hybrid PCLstarch scaffolds processed using supercritical fluid technology. Carbohyd Polym 142, 282–292.

    CAS  Google Scholar 

  • Diaz-Gomez, L., Yang, F., Jansen, J.A., Concheiro, A., Alvarez-Lorenzo, C., and García-González, C.A. (2016b). Low viscosity-PLGA scaffolds by compressed CO2 foaming for growth factor delivery. RSC Adv 6, 70510–70519.

    CAS  Google Scholar 

  • Duarte, A.R.C., Mano, J.F., and Reis, R.L. (2009). Perspectives on: supercritical fluid technology for 3D tissue engineering scaffold applications. J Bioact Compat Polym 24, 385–400.

    CAS  Google Scholar 

  • Fanovich, M.A., Ivanovic, J., Misic, D., Alvarez, M.V., Jaeger, P., Zizovic, I., and Eggers, R. (2013). Development of polycaprolactone scaffold with antibacterial activity by an integrated supercritical extraction and impregnation process. J Supercrit Fluids 78, 42–53.

    CAS  Google Scholar 

  • Hegde, C., Shetty, V., Wasnik, S., Ahammed, I., and Shetty, V. (2013). Use of bone graft substitute in the treatment for distal radius fractures in elderly. Eur J Orthop Surg Traumatol 23, 651–656.

    PubMed  Google Scholar 

  • Hile, D.D., Amirpour, M.L., Akgerman, A., and Pishko, M.V. (2000). Active growth factor delivery from poly(D,L-lactide-co-glycolide) foams prepared in supercritical CO2. J Control Releas 66, 177–185.

    CAS  Google Scholar 

  • Jing, X., Mi, H., Cordie, T., Salick, M., Peng, X., and Turng, L.S. (2014). Fabrication of porous poly(ε-caprolactone) scaffolds containing chitosan nanofibers by combining extrusion foaming, leaching, and freeze-drying methods. Ind Eng Chem Res 53, 17909–17918.

    CAS  Google Scholar 

  • Kankala, R.K., Zhu, K., Li, J., Wang, C., Wang, S., and Chen, A. (2017a). Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication 9, 032002.

    PubMed  Google Scholar 

  • Kankala, R.K., Zhang, Y., Wang, S., Lee, C.H., and Chen, A. (2017b). Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 6, 1700433.

    Google Scholar 

  • Kankala, R.K., Zhu, K., Sun, X., Liu, C., Wang, S., and Chen, A. (2018a). Cardiac tissue engineering on the nanoscale. ACS Biomater Sci Eng 4, 800–818.

    CAS  Google Scholar 

  • Kankala, R.K., Xu, X., Liu, C., Chen, A., and Wang, S. (2018b). 3D-printing of microfibrous porous scaffolds based on hybrid approaches for bone tissue engineering. Polymers 10, 807.

    PubMed Central  Google Scholar 

  • Kankala, R.K., Chen, B., Liu, C., Tang, H., Wang, S., and Chen, A. (2018c). Solution-enhanced dispersion by supercritical fluids: an ecofriendly nanonization approach for processing biomaterials and pharmaceutical compounds. Int J Nanomed 13, 4227–4245.

    CAS  Google Scholar 

  • Kim, H.Y., Kim, H.N., Lee, S.J., Song, J.E., Kwon, S.Y., Chung, J.W., Lee, D., and Khang, G. (2017). Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo. J Tissue Eng Regen Med 11, 44–57.

    CAS  PubMed  Google Scholar 

  • Krause, B., Mettinkhof, R., van der Vegt, N.F.A., and Wessling, M. (2001). Microcellular foaming of amorphous high-T g polymers using carbon dioxide. Macromolecules 34, 874–884.

    CAS  Google Scholar 

  • Lee, S.J., Lee, D., Yoon, T.R., Kim, H.K., Jo, H.H., Park, J.S., Lee, J.H., Kim, W.D., Kwon, I.K., and Park, S.A. (2016). Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater 40, 182–191.

    CAS  PubMed  Google Scholar 

  • Lenas, P., and Ikonomou, L. (2018). Developmental engineering: design of clinically efficacious bioartificial tissues through developmental and systems biology. Sci China Life Sci 61, 978–981.

    PubMed  PubMed Central  Google Scholar 

  • Lian, Z., Epstein, S.A., Blenk, C.W., and Shine, A.D. (2006). Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers. J Supercrit Fluids 39, 107–117.

    CAS  Google Scholar 

  • Luo, G., Huang, Y., and Gu, F. (2017). RhBMP2-loaded calcium phosphate cements combined with allogenic bone marrow mesenchymal stem cells for bone formation. Biomed Pharmacother 92, 536–543.

    CAS  PubMed  Google Scholar 

  • Mao, J., Duan, S., Song, A., Cai, Q., Deng, X., and Yang, X. (2012). Macroporous and nanofibrous poly(lactide-co-glycolide)(50/50) scaffolds via phase separation combined with particle-leaching. Mater Sci Eng-C 32, 1407–1414.

    CAS  Google Scholar 

  • Mathieu, L.M., Montjovent, M.O., Bourban, P.E., Pioletti, D.P., and Månson, J.A.E. (2005). Bioresorbable composites prepared by supercritical fluid foaming. J Biomed Mater Res 75A, 89–97.

    Google Scholar 

  • Mathieu, L.M., Mueller, T.L., Bourban, P.E., Pioletti, D.P., Müller, R., and Månson, J.A.E. (2006). Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27, 905–916.

    CAS  PubMed  Google Scholar 

  • Moshiri, A., and Oryan, A. (2012). Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns. Hard Tissue 1, 11.

    Google Scholar 

  • Nam, Y.S., Yoon, J.J., and Park, T.G. (2015). A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 53, 1–7.

    Google Scholar 

  • Oryan, A., Alidadi, S., Moshiri, A., and Maffulli, N. (2014). Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9, 18.

    PubMed  PubMed Central  Google Scholar 

  • Park, K.H., Kim, H., Moon, S., and Na, K. (2009). Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J Biosci Bioeng 108, 530–537.

    CAS  PubMed  Google Scholar 

  • Qu, X., Cao, Y., Chen, C., Die, X., and Kang, Q. (2014). A poly(lactide-coglycolide) film loaded with abundant bone morphogenetic protein-2: a substrate-promoting osteoblast attachment, proliferation, and differentiation in bone tissue engineering. J Biomed Mater Res 103, 2786–2796.

    Google Scholar 

  • Rajabzadeh, S., Liang, C., Ohmukai, Y., Maruyama, T., and Matsuyama, H. (2012). Effect of additives on the morphology and properties of poly (vinylidene fluoride) blend hollow fiber membrane prepared by the thermally induced phase separation method. J Membrane Sci 423–424, 189–194.

    Google Scholar 

  • Salerno, A., Clerici, U., and Domingo, C. (2014a). Solid-state foaming of biodegradable polyesters by means of supercritical CO2/ethyl lactate mixtures: towards designing advanced materials by means of sustainable processes. Eur Polymer J 51, 1–11.

    CAS  Google Scholar 

  • Salerno, A., Fanovich, M.A., and Pascual, C.D. (2014b). The effect of ethyl-lactate and ethyl-acetate plasticizers on PCL and PCL-HA composites foamed with supercritical CO2. J Supercrit Fluids 95, 394–406.

    CAS  Google Scholar 

  • Salerno, A., Diéguez, S., Diaz-Gomez, L., Gómez-Amoza, J.L., Magariños, B., Concheiro, A., Domingo, C., Alvarez-Lorenzo, C., and García-González, C.A. (2017). Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers. Biofabrication 9, 035002.

    PubMed  Google Scholar 

  • Shen, X., Zhang, Y., Gu, Y., Xu, Y., Liu, Y., Li, B., and Chen, L. (2016). Sequential and sustained release of SDF-1 and BMP-2 from silk fibroinnanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials 106, 205–216.

    CAS  PubMed  Google Scholar 

  • Singh, L., Kumar, V., and Ratner, B.D. (2004). Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. Biomaterials 25, 2611–2617.

    CAS  PubMed  Google Scholar 

  • Tomasko, D.L., Li, H., Liu, D., Han, X., Wingert, M.J., Lee, L.J., and Koelling, K.W. (2003). A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42, 6431–6456.

    CAS  Google Scholar 

  • Tsuji, K., Bandyopadhyay, A., Harfe, B.D., Cox, K., Kakar, S., Gerstenfeld, L., Einhorn, T., Tabin, C.J., and Rosen, V. (2006). BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38, 1424–1429.

    CAS  PubMed  Google Scholar 

  • White, L.J., Hutter, V., Tai, H., Howdle, S.M., and Shakesheff, K.M. (2012). The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater 8, 61–71.

    CAS  PubMed  Google Scholar 

  • Woodruff, M.A., and Hutmacher, D.W. (2010). The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polymer Sci 35, 1217–1256.

    CAS  Google Scholar 

  • Xie, Y., Song, W., Zhao, W., Gao, Y., Shang, J., Hao, P., Yang, Z., Duan, H., and Li, X. (2018). Application of the sodium hyaluronate-cntf scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Sci China Life Sci 61, 559–568.

    CAS  PubMed  Google Scholar 

  • Yano, K., Hoshino, M., Ohta, Y., Manaka, T., Naka, Y., Imai, Y., Sebald, W., and Takaoka, K. (2009). Osteoinductive capacity and heat stability of recombinant human bone morphogenetic protein-2 produced by Escherichia coli and dimerized by biochemical processing. J Bone Miner Metab 27, 355–363.

    CAS  PubMed  Google Scholar 

  • Yang, D., Chen, A., Wang, S., Li, Y., Tang, X., and Wu, Y. (2015). Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide. Biomed Mater 10, 035015.

    PubMed  Google Scholar 

  • Zeltinger, J., Sherwood, J.K., Graham, D.A., Müeller, R., and Griffith, L.G. (2001). Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7, 557–572.

    CAS  PubMed  Google Scholar 

  • Zhao, G., Cao, Y., Zhu, X., Tang, X., Ding, L., Sun, H., Li, J., Li, X., Dai, C., Ru, T., et al. (2017). Transplantation of collagen scaffold with autologous bone marrow mononuclear cells promotes functional endometrium reconstruction via downregulating ΔNp63 expression in Asherman’s syndrome. Sci China Life Sci 60, 404–416.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1605225, 31570974, and 31470927), the Public Science and Technology Research Funds Projects of Ocean (201505029), the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY107) and the Program for Innovative Research Team in Science and Technology in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizheng Chen.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Supplementary material, approximately 15.1 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Kankala, R.K., Wang, S. et al. Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous scaffolds for bone tissue engineering. Sci. China Life Sci. 62, 1670–1682 (2019). https://doi.org/10.1007/s11427-018-9393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9393-8

Keywords

Navigation