Skip to main content
Log in

Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Bacterial prodigiosins are red-colored secondary metabolites with multiple activities, such as anticancer, antimalarial and immunosuppressive, which hold great potential for medical applications. In this study, dramatically enhanced prodigiosins (RED) production in Streptomyces coelicolor was achieved by combinatorial metabolic engineering, including inactivation of the repressor gene ohkA, deletion of the actinorhodin (ACT) and calcium-dependent antibiotic (CDA) biosynthetic gene clusters (BGCs) and multi-copy chromosomal integration of the RED BGC. The results showed that ohkA deletion led to a 1-fold increase of RED production over the wild-type strain M145. Then, the ACT and CDA BGCs were deleted successively based on the ΔohkA mutant (SBJ101). To achieve multi-copy RED BGC integration, artificial ΦC31 attB site(s) were inserted simultaneously at the position where the ACT and CDA BGCs were deleted. The resulting strains SBJ102 (with a single deletion of the ACT BGC and insertion of one artificial attB site) and SBJ103 (with the deletion of both BGCs and insertion of two artificial attB sites) produced 1.9- and 6-fold higher RED titers than M145, respectively. Finally, the entire RED BGC was introduced into mutants from SBJ101 to SBJ103, generating three mutants (from SBJ104 to SBJ106) with chromosomal integration of one to three copies of the RED BGC. The highest RED yield was from SBJ106, which produced a maximum level of 96.8 mg g−1 cell dry weight, showing a 12-fold increase relative to M145. Collectively, the metabolic engineering strategies employed in this study are very efficient for the construction of high prodigiosin-producing strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T.B., Brian, P., and Champness, W.C. (2001). Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol Microbiol 39, 553–566.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.C., Chen, W.C., Ho, T.F., Wu, H.S., and Wei, Y.H. (2011). Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 111, 501–511.

    Article  CAS  PubMed  Google Scholar 

  • Darshan, N., and Manonmani, H.K. (2015). Prodigiosin and its potential applications. J Food Sci Technol 52, 5393–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Araújo, H.W., Fukushima, K., and Takaki, G.M. (2010). Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules 15, 6931–6940.

    Article  PubMed  Google Scholar 

  • Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Meth 6, 343–345.

    Article  CAS  Google Scholar 

  • Giri, A.V., Anandkumar, N., Muthukumaran, G., and Pennathur, G. (2004). A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol 4, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100, 1541–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie, E.P., Flaxman, C.S., White, J., Hodgson, D.A., Bibb, M.J., and Chater, K.F. (1998). A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology 144 (Pt 3), 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Hejazi, A., and Falkiner, F.R. (1997). Serratia marcescens. J Med Microbiol 46, 903–912.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Zheng, G., Jiang, W., Hu, H., and Lu, Y. (2015). One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47, 231–243.

    Article  Google Scholar 

  • Kieser, T., Bibb M., Buttner M., and Chater K. (2000). Practical Streptomyces genetics. John Innes Foundation, Norwich, England.

    Google Scholar 

  • Lee, N.C.O., Larionov, V., and Kouprina, N. (2015). Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res 43, e55–e55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L., Zheng, G., Chen, J., Ge, M., Jiang, W., and Lu, Y. (2017). Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 40, 80–92.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77, 112–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-CT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lu, C., Zhang, X., Jiang, M., and Bai, L. (2016). Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., He, J., Zhu, H., Yu, Z., Wang, R., Chen, Y., Dang, F., Zhang, W., Yang, S., and Jiang, W. (2011). An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor. J Bacteriol 193, 3020–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlen, S.D. (2011). Serratia infections: from military experiments to current practice. Clin Microbiol Rev 24, 755–791.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao, X.M., Sun, Z.H., Liang, B.R., Wang, Z.B., Feng, W.H., Huang, F.L., and Li, Y.Q. (2013). Positive feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor. J Bacteriol 195, 2072–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo, S.J., Kim, J., and Oh, C.H. (2013). Different effects of acidic pH shock on the prodiginine production in Streptomyces coelicolor M511 and SJM1 mutants. J Microbiol Biotechnol 23, 1454–1459.

    Article  CAS  PubMed  Google Scholar 

  • Mo, S.J., Sydor, P.K., Corre, C., Alhamadsheh, M.M., Stanley, A.E., Haynes, S.W., Song, L., Reynolds, K.A., and Challis, G.L. (2008). Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol 15, 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern, A., Paetz, C., Behrend, A., and Spiteller, D. (2015). Divalent transition-metal-ion stress induces prodigiosin biosynthesis inStreptomyces coelicolor M145: formation of coeligiosins. Chem Eur J 21, 6027–6032.

    Article  CAS  PubMed  Google Scholar 

  • Ou, X., Zhang, B., Zhang, L., Zhao, G., and Ding, X. (2009). Characterization of rrdA, a TetR family protein gene involved in the regulation of secondary metabolism in Streptomyces coelicolor. Appl Environ Microbiol 75, 2158–2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schäberle, T.F., Orland, A., and König, G.M. (2014). Enhanced production of undecylprodigiosin in Streptomyces coelicolor by co-cultivation with the corallopyronin A-producing myxobacterium, Corallococcus coralloides. Biotechnol Lett 36, 641–648.

    Article  PubMed  Google Scholar 

  • Sevcikova, B., and Kormanec, J. (2004). Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch Microbiol 181, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Stankovic, N., Senerovic, L., Ilic-Tomic, T., Vasiljevic, B., and Nikodinovic-Runic, J. (2014). Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl Microbiol Biotechnol 98, 3841–3858.

    Article  CAS  PubMed  Google Scholar 

  • Stanley, A.E., Walton, L.J., Kourdi Zerikly, M., Corre, C., and Challis, G.L. (2006). Elucidation of the Streptomyces coelicolor pathway to 4-methoxy-2,2’-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. Chem Commun (Camb), 3981–3983.

    Google Scholar 

  • Swiatek, M.A., Gubbens, J., Bucca, G., Song, E., Yang, Y.H., Laing, E., Kim, B.G., Smith, C.P., and van Wezel, G.P. (2013). The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 195, 1236–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiatek, M.A., Tenconi, E., Rigali, S., and van Wezel, G.P. (2012). Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194, 1136–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano, E., Gramajo, H.C., Strauch, E., Andres, N., White, J., and Bibb, M.J. (1992). Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6, 2797–2804.

    Article  CAS  PubMed  Google Scholar 

  • Tsao, S.W., Rudd, B.A.M., He, X.G., Chang, C.J., and Floss, H.G. (1985). Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives.. J Antibiot 38, 128–131.

    Article  CAS  PubMed  Google Scholar 

  • van Dissel, D., Claessen, D., Roth, M., and van Wezel, G.P. (2015). A novel locus for mycelial aggregation forms a gateway to improved Streptomyces cell factories. Microb Cell Fact 14, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Mast, Y., Wang, J., Zhang, W., Zhao, G., Wohlleben, W., Lu, Y., and Jiang, W. (2013). Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87, 30–48.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Y.H., and Chen, W.C. (2005). Enhanced production of prodigiosin-like pigment from Serratia marcescens SM?R by medium improvement and oil-supplementation strategies. J Biosci Bioeng 99, 616–622.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, N.R., Fineran, P.C., Leeper, F.J., and Salmond, G.P.C. (2006). The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4, 887–899.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, N.R., Simonsen, H.T., Ahmed, R.A.A., Goldet, G., Slater, H., Woodley, L., Leeper, F.J., and Salmond, G.P.C. (2005). Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56, 971–989.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, K., Reynolds, K.A., Kersten, R.D., Ryan, K.S., Gonzalez, D.J., Nizet, V., Dorrestein, P.C., and Moore, B.S. (2014). Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA 111, 1957–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Z., Zhu, H., Dang, F., Zhang, W., Qin, Z., Yang, S., Tan, H., Lu, Y., and Jiang, W. (2012). Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85, 535–556.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Zhang, L., Dai, R., Yu, M., Zhao, G., and Ding, X. (2013). An efficient procedure for marker-free mutagenesis of S.coelicolor by sitespecific recombination for secondary metabolite overproduction. PLoS ONE 8, e55906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31430004, 31421061, 31630003, 31370081 and 31570072) and the Science and Technology Commission of Shanghai Municipality (16490712100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhu, H., Zheng, G. et al. Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci. China Life Sci. 60, 948–957 (2017). https://doi.org/10.1007/s11427-017-9117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9117-x

Keywords

Navigation