Skip to main content
Log in

A bifunctional wood membrane modified by MoS2/covalent organic framework heterojunctions for effective solar-driven water evaporation and contaminant degradation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Interfacial solar evaporation technology is considered one of the most promising strategies for alleviating the scarcity of freshwater resources. However, solar-driven evaporation technology cannot eliminate the pollutants in the residual wastewater. To solve this problem, we have prepared a two-in-one solar-driven evaporation/photocatalysis system by decorating MoS2/covalent organic framework (COF) heterojunctions on wood (MoS2/COF-wood). Thanks to the unique porous structure of wood, it provides a strong guarantee for water transport and vapor release during the evaporation process. The introduction of MoS2 and COFs can promote the breaking of hydrogen bonds between water molecules, which leads to a significant decrease in the enthalpy of evaporation, achieving a water evaporation rate as high as 2.17 kg m−2 h−1 under 1 sun irradiation. Meanwhile, the resulting MoS2/COF-wood exhibits good salt resistance and reusability. In addition, the heterojunctions formed between COFs and MoS2 can effectively inhibit charge carrier complexation and improve the photocatalytic degradation ability of pollutants (over 99%). This study highlights the construction strategy of bifunctional wood-based materials for freshwater production and wastewater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su X, Hao D, Sun M, Wei T, Xu D, Ai X, Guo X, Zhao T, Jiang L. Adv Funct Mater, 2022, 32: 2108135

    Article  CAS  Google Scholar 

  2. Zhao L, Wang L, Shi J, Hou X, Wang Q, Zhang Y, Wang Y, Bai N, Yang J, Zhang J, Yu B, Guo CF. ACS Nano, 2021, 15: 5752–5761

    Article  CAS  PubMed  Google Scholar 

  3. Gao T, Wang Y, Wu X, Wu P, Yang X, Li Q, Zhang Z, Zhang D, Owens G, Xu H. Sci Bull, 2022, 67: 1572–1580

    Article  CAS  Google Scholar 

  4. Yu H, Wang D, Jin H, Wu P, Wu X, Chu D, Lu Y, Yang X, Xu H. Adv Funct Mater, 2023, 33: 2214828

    Article  CAS  Google Scholar 

  5. Xia Q, Wang C, Xu N, Yang J, Gao G, Ding J. Adv Funct Mater, 2023, 33: 2214769

    Article  CAS  Google Scholar 

  6. Xie D, He M, Li X, Sun J, Luo J, Wu Y, Cheng F. Nano Energy, 2022, 93: 106802

    Article  CAS  Google Scholar 

  7. Cui L, Ma C, Wang P, Che H, Xu H, Ao Y. Appl Catal B-Environ, 2023, 337: 122988

    Article  CAS  Google Scholar 

  8. Tan X, Zhang H, Li L, Sun Y, Li J. Chem Commun, 2023, 59: 9556–9574

    Article  CAS  Google Scholar 

  9. Zhou X, Guo Y, Zhao F, Shi W, Yu G. Adv Mater, 2020, 32: 2007012

    Article  Google Scholar 

  10. He W, Zhou L, Wang M, Cao Y, Chen X, Hou X. Sci Bull, 2021, 66: 1472–1483

    Article  CAS  Google Scholar 

  11. Yang M-, Tan CF, Lu W, Zeng K, Ho GW. Adv Funct Mater, 2020, 30: 2004460

    Article  CAS  Google Scholar 

  12. Sun L, Li Z, Su R, Wang Y, Li Z, Du B, Sun Y, Guan P, Besenbacher F, Yu M. Angew Chem Int Ed, 2018, 57: 10666–10671

    Article  CAS  Google Scholar 

  13. Zhang J, Liu J, Wang X, Mai J, Zhao W, Ding Z, Fang Y. Appl Catal B-Environ, 2019, 259: 118063

    Article  CAS  Google Scholar 

  14. Jiang H, Xing Z, Zhao T, Yang Z, Wang K, Li Z, Yang S, Xie L, Zhou W. Appl Catal B-Environ, 2020, 274: 118947

    Article  CAS  Google Scholar 

  15. Li W, Tekell MC, Huang Y, Bertelsmann K, Lau M, Fan D. Adv Energy Mater, 2018, 8: 1802108

    Article  Google Scholar 

  16. Gong YN, Guan X, Jiang HL. Coord Chem Rev, 2023, 475: 214889

    Article  CAS  Google Scholar 

  17. Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem Soc Rev, 2020, 49: 3565–3604

    Article  CAS  PubMed  Google Scholar 

  18. Cao S, Thomas A, Li C. Angew Chem Int Ed, 2023, 62: e202214391

    Article  CAS  Google Scholar 

  19. Samineni L, Kumar M. Nat Nanotechnol, 2022, 17: 564–566

    Article  CAS  PubMed  Google Scholar 

  20. Jrad A, Olson MA, Trabolsi A. Chem, 2023, 9: 1413–1451

    Article  CAS  Google Scholar 

  21. Li Z, Zhi Y, Shao P, Xia H, Li G, Feng X, Chen X, Shi Z, Liu X. Appl Catal B-Environ, 2019, 245: 334–342

    Article  CAS  Google Scholar 

  22. Yang X, Lan X, Zhang Y, Li H, Bai G. Appl Catal B-Environ, 2023, 325: 122393

    Article  CAS  Google Scholar 

  23. Chen X, He S, Falinski MM, Wang Y, Li T, Zheng S, Sun D, Dai J, Bian Y, Zhu X, Jiang J, Hu L, Ren ZJ. Energy Environ Sci, 2021, 14: 5347–5357

    Article  CAS  Google Scholar 

  24. Sheng K, Tian M, Zhu J, Zhang Y, Van der Bruggen B. ACS Nano, 2023, 17: 15482–15491

    Article  CAS  Google Scholar 

  25. Zhang X, Yang L, Dang B, Tao J, Li S, Zhao S, Li W, Li J, Chen Z, Liu S. Nano Energy, 2020, 78: 105322

    Article  CAS  Google Scholar 

  26. Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, Jia C, Chen C, Hitz E, Siddhartha D, Yang R, Hu L. Adv Funct Mater, 2018, 28: 1707134

    Article  Google Scholar 

  27. He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, Jia C, Chen X, Gong A, Liao J, Li J, Ren ZJ, Yang B, Das S, Hu L. Energy Environ Sci, 2019, 12: 1558–1567

    Article  CAS  Google Scholar 

  28. Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W. J Am Chem Soc, 2011, 133: 19816–19822

    Article  CAS  PubMed  Google Scholar 

  29. Wang D, Zhang X, Bao S, Zhang Z, Fei H, Wu Z. J Mater Chem A, 2017, 5: 2681–2688

    Article  CAS  Google Scholar 

  30. Yuan YJ, Shen Z, Wu S, Su Y, Pei L, Ji Z, Ding M, Bai W, Chen Y, Yu ZT, Zou Z. Appl Catal B-Environ, 2019, 246: 120–128

    Article  CAS  Google Scholar 

  31. Ruan D, Lin R, Jiang K, Yu X, Zhu Y, Fu Y, Wang Z, Yan H, Mai W. ACS Appl Mater Interfaces, 2017, 9: 29699–29706

    Article  CAS  PubMed  Google Scholar 

  32. Jie W, Yang Z, Zhang F, Bai G, Leung CW, Hao J. ACS Nano, 2017, 11: 6950–6958

    Article  CAS  PubMed  Google Scholar 

  33. Shao B, Wang Y, Wu X, Lu Y, Yang X, Chen GY, Owens G, Xu H. J Mater Chem A, 2020, 8: 11665–11673

    Article  CAS  Google Scholar 

  34. Hou L, Wang N, Yu LJ, Liu J, Zhang S, Cui Z, Li S, Li H, Liu X, Jiang L, Zhao Y. ACS Energy Lett, 2023, 8: 553–564

    Article  CAS  Google Scholar 

  35. Song H, Liu Y, Liu Z, Singer MH, Li C, Cheney AR, Ji D, Zhou L, Zhang N, Zeng X, Bei Z, Yu Z, Jiang S, Gan Q. Adv Sci, 2018, 5: 1800222

    Article  Google Scholar 

  36. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G. Nat Nanotech, 2018, 13: 489–495

    Article  CAS  Google Scholar 

  37. Liu X, Chen F, Li Y, Jiang H, Mishra DD, Yu F, Chen Z, Hu C, Chen Y, Qu L, Zheng W. Adv Mater, 2022, 34: 2203137

    Article  CAS  Google Scholar 

  38. Dong X, Cao L, Si Y, Ding B, Deng H. Adv Mater, 2020, 32: 1908269

    Article  CAS  Google Scholar 

  39. Wu X, Gao T, Han C, Xu J, Owens G, Xu H. Sci Bull, 2019, 64: 1625–1633

    Article  CAS  Google Scholar 

  40. Li C, Ma Z, Han B. Appl Catal B-Environ, 2022, 303: 120901

    Article  CAS  Google Scholar 

  41. Yuan ZS, Zou JX, Zhao XL, Shi JY, Guo CS, Yan M. J Mater Sci Tech, 2023, 166: 86–97

    Article  CAS  Google Scholar 

  42. Zhou X, Shen B, Zhai J, Hedin N. Adv Funct Mater, 2021, 31: 2009594

    Article  CAS  Google Scholar 

  43. Shang S, Yang H, Shi D, Dong B, Zhang H, Cheng Q, Pan Z. New J Chem, 2021, 45: 17025–17036

    Article  CAS  Google Scholar 

  44. Qin Y, Li H, Lu J, Feng Y, Meng F, Ma C, Yan Y, Meng M. Appl Catal B-Environ, 2020, 277: 119254

    Article  CAS  Google Scholar 

  45. Dong B, Wan Y, Cheng Q, Zhou H, Pan Z. Environ Sci-Nano, 2022, 9: 2799–2814

    Article  CAS  Google Scholar 

  46. Jiang L, Yu H, Shi L, Zhao Y, Wang Z, Zhang M, Yuan S. Appl Catal B-Environ, 2016, 199: 224–229

    Article  CAS  Google Scholar 

  47. Adhikari S, Mandal S, Kim DH. Chem Eng J, 2019, 373: 31–43

    Article  CAS  Google Scholar 

  48. Wang J, Wang J, Zuo S, Pei J, Liu W, Wang J. Chinese Chem Lett, 2023, 34: 108157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22175094, 21971113, 22108125), the Independent Innovation of Agricultural Science and Technology in Jiangsu Province (CX(21)3163), the Natural Science Foundation of Jiangsu Province (BK20210627), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_1178) and the Natural Science Foundation of the Jiangsu Higher Education Institutions (20KJA150001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Tian.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2023_1961_MOESM1_ESM.docx

Supporting Information: A bifunctional wood membrane modified by MoS2/covalent organic framework heterojunctions for effective solar-driven water evaporation and contaminant degradation

Supplementary material, approximately 7.66 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Wu, J., Li, H. et al. A bifunctional wood membrane modified by MoS2/covalent organic framework heterojunctions for effective solar-driven water evaporation and contaminant degradation. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-1961-3

Navigation