Skip to main content
Log in

Highly efficient through-space charge transfer TADF molecule employed in TADF- and TADF-sensitized organic light-emitting diodes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The inception and harnessing of excitons are paramount for the electroluminescence performance of organic light-emitting devices (OLEDs). Through-space charge transfer (TSCT) via intramolecular interaction has proved to be one of the most potent techniques employed to achieve 100% internal quantum efficiency. However, molecular strategies utilized to comprehensively enhance the electroluminescent performance of TSCT emitters regarding improving the photoluminescence quantum yield (PLQY) and elevating the light out-coupling efficiency remain arduous. To surmount this challenge, we deliberately designed and synthesized a proof-of-concept TSCT emitter called CzO-TRZ by incorporating an extra carbazole donor into spiro-heterocyclic architecture. The introduction of rigid spiral fragments can immensely boost the horizontal orientation dipole ratio and establish an extra through-bond charge transfer (TBCT) radiative decay channel. As a result, a very high PLQY of 98.7%, fast kRISC of 2.2×105 s−1 and high krs of 2.2×107 s−1, and an ultrahigh horizontal dipolar ratio of 90% were concurrently achieved for CzO-TRZ blended films. Furthermore, corresponding thermally activated delayed fluorescence (TADF)- and TADF-sensitized fluorescence (TSF)-OLEDs based on CzO-TRZ demonstrated external quantum efficiencies (EQEs) of 33.4% and 30.3%, respectively, highlighting its versatile applications as both an emitter and sensitized host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang CW, VanSlyke SA. Appl Phys Lett, 1987, 51: 913–915

    Article  CAS  Google Scholar 

  2. Chao T, Lin Y, Yang C, Hung T, Chou H, Wu C, Wong K. Adv Mater, 2005, 17: 992–996

    Article  CAS  Google Scholar 

  3. Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C. J Am Chem Soc, 2012, 134: 14706–14709

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Cohn P, Eom SH, Abboud KA, Castellano RK, Xue J. J Mater Chem C, 2013, 1: 2867–2874

    Article  CAS  Google Scholar 

  5. Hirata S, Sakai Y, Masui K, Tanaka H, Lee SY, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q, Shizu K, Miyazaki H, Adachi C. Nat Mater, 2015, 14: 330–336

    Article  CAS  PubMed  Google Scholar 

  6. Zhan L, Chen T, Zhong C, Cao X, Zhang Y, Zou Y, Bin Z, You J, Zhang D, Duan L, Yang C, Gong S. Sci China Chem, 2023, 66: 3213–3222

    Article  CAS  Google Scholar 

  7. Ning W, Wang H, Gong S, Zhong C, Yang C. Sci China Chem, 2022, 65: 1715–1719

    Article  CAS  Google Scholar 

  8. Zhang YP, Song SQ, Mao MX, Li CH, Zheng YX, Zuo JL. Sci China Chem, 2022, 65: 1347–1355

    Article  CAS  Google Scholar 

  9. Cho TY, Lin CL, Wu CC. Appl Phys Lett, 2006, 88: 111106

    Article  Google Scholar 

  10. Poitras D, Kuo CC, Py C. Opt Express, 2008, 16: 8003–8015

    Article  PubMed  Google Scholar 

  11. Jiang P, Miao J, Cao X, Xia H, Pan K, Hua T, Lv X, Huang Z, Zou Y, Yang C. Adv Mater, 2022, 34: e2106954

    Article  PubMed  Google Scholar 

  12. Park IS, Yang M, Shibata H, Amanokura N, Yasuda T. Adv Mater, 2022, 34: e2107951

    Article  PubMed  Google Scholar 

  13. Zhang Y, Li G, Wang L, Huang T, Wei J, Meng G, Wang X, Zeng X, Zhang D, Duan L. Angew Chem Int Ed, 2022, 61: e202202380

    Article  CAS  Google Scholar 

  14. Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C. Nat Commun, 2015, 6: 8476

    Article  CAS  PubMed  Google Scholar 

  15. Hong X, Zhang D, Yin C, Wang Q, Zhang Y, Huang T, Wei J, Zeng X, Meng G, Wang X, Li G, Yang D, Ma D, Duan L. Chem, 2022, 8: 1705–1719

    Article  CAS  Google Scholar 

  16. Chen Y, Zhang D, Zhang Y, Zeng X, Huang T, Liu Z, Li G, Duan L. Adv Mater, 2021, 33: e2103293

    Article  PubMed  Google Scholar 

  17. Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C. Nat Commun, 2014, 5: 4016

    Article  CAS  PubMed  Google Scholar 

  18. Wang S, Qiao M, Ye Z, Dou D, Chen M, Peng Y, Shi Y, Yang X, Cui L, Li J, Li C, Wei B, Wong WY. iScience, 2018, 9: 532–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang X, Cui L, Li H, Gillett A, Auras F, Qu Y, Zhong C, Jones S, Jiang Z, Friend H, Liao L. Nat Mater, 2020, 19: 1332–1338

    Article  CAS  PubMed  Google Scholar 

  20. Wei J, Zhang C, Zhang D, Zhang Y, Liu Z, Li Z, Yu G, Duan L. Angew Chem Int Ed, 2021, 60: 12269–12273

    Article  CAS  Google Scholar 

  21. Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T. J Am Chem Soc, 2018, 140: 1195–1198

    Article  CAS  PubMed  Google Scholar 

  22. Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat Photonics, 2019, 13: 678–682

    Article  CAS  Google Scholar 

  23. Oda S, Kawakami B, Kawasumi R, Okita R, Hatakeyama T. Org Lett, 2019, 21: 9311–9314

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Zhang D, Wei J, Liu Z, Lu Y, Duan L. Angew Chem Int Ed, 2019, 58: 16912–16917

    Article  CAS  Google Scholar 

  25. Naveen KR, Lee H, Braveenth R, Karthik D, Yang KJ, Hwang SJ, Kwon JH. Adv Funct Mater, 2022, 32: 2110356

    Article  CAS  Google Scholar 

  26. Yang M, Shikita S, Min H, Park IS, Shibata H, Amanokura N, Yasuda T. Angew Chem Int Ed, 2021, 60: 23142–23147

    Article  CAS  Google Scholar 

  27. Zou Y, Hu J, Yu M, Miao J, Xie Z, Qiu Y, Cao X, Yang C. Adv Mater, 2022, 34: e2201442

    Article  PubMed  Google Scholar 

  28. Zhang Y, Zhang D, Huang T, Gillett AJ, Liu Y, Hu D, Cui L, Bin Z, Li G, Wei J, Duan L. Angew Chem Int Ed, 2021, 60: 20498–20503

    Article  CAS  Google Scholar 

  29. Yang M, Park IS, Yasuda T. J Am Chem Soc, 2020, 142: 19468–19472

    Article  CAS  PubMed  Google Scholar 

  30. Han SH, Jeong JH, Yoo JW, Lee JY. J Mater Chem C, 2019, 7: 3082–3089

    Article  CAS  Google Scholar 

  31. Meng G, Zhang D, Wei J, Zhang Y, Huang T, Liu Z, Yin C, Hong X, Wang X, Zeng X, Yang D, Ma D, Li G, Duan L. Chem Sci, 2022, 13: 5622–5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee HL, Chung WJ, Lee JY. Small, 2020, 16: e1907569

    Article  PubMed  Google Scholar 

  33. Patil VV, Lee HL, Kim I, Lee KH, Chung WJ, Kim J, Park S, Choi H, Son W, Jeon SO, Lee JY. Adv Sci, 2021, 8: e2101137

    Article  Google Scholar 

  34. Patil VV, Lim J, Lee JY. ACS Appl Mater Interfaces, 2021, 13: 14440–14446

    Article  CAS  PubMed  Google Scholar 

  35. Lee HL, Jeon SO, Kim I, Kim SC, Lim J, Kim J, Park S, Chwae J, Son W, Choi H, Lee JY. Adv Mater, 2022, 34: e2202464

    Article  PubMed  Google Scholar 

  36. Liu T, Cheng C, Lou W, Deng C, Liu J, Wang D, Tsuboi T, Zhang Q. J Mater Chem C, 2022, 10: 7799–7802

    Article  CAS  Google Scholar 

  37. Luo M, Li W, Lyu L, Li D, Du S, Zhao M, Wang Z, Zhang J, Li Y, Ge Z. Adv Opt Mater, 2022, 11: 2202176

    Article  Google Scholar 

  38. Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Angew Chem Int Ed, 2022, 61: e202117181

    Article  CAS  Google Scholar 

  39. Taniguchi T, Itai Y, Nishii Y, Tohnai N, Miura M. Chem Lett, 2019, 48: 1160–1163

    Article  CAS  Google Scholar 

  40. Burke K, Werschnik J, Gross EKU. J Chem Phys, 2005, 123: 62206

    Article  PubMed  Google Scholar 

  41. Runge E, Gross EKU. Phys Rev Lett, 1984, 52: 997–1000

    Article  CAS  Google Scholar 

  42. Chen S, Xu H. Chem Soc Rev, 2021, 50: 8639–8668

    Article  CAS  PubMed  Google Scholar 

  43. Li D, Li M, Liu D, Yang J, Li W, Yang Z, Yuan H, Jiang S, Peng X, Yang G, Xie W, Qiu W, Gan Y, Liu K, Su S. Adv Opt Mater, 2023, 11: 2301084

    Article  CAS  Google Scholar 

  44. Song X, Shen S, Zou S, Guo F, Wang Y, Gao S, Zhang Y. Chem Eng J, 2023, 467: 143557

    Article  CAS  Google Scholar 

Download references

Acknowledgements This work was supported by the National Natural Science Foundation of China (U21A20331, 51773212, 81903743, 52003088), the Distinguished Young Scholars (21925506) and the Ningbo Key Scientific and Technological Project (2022Z124, 2022Z119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Ziyi Ge.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2023_1894_MOESM1_ESM.docx

Highly efficient Through-space Charge Transfer TADF Molecule Employed in TADF- and TADF-sensitized Organic Light-emitting Diodes

Supplementary material, approximately 791 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, D., Li, W. et al. Highly efficient through-space charge transfer TADF molecule employed in TADF- and TADF-sensitized organic light-emitting diodes. Sci. China Chem. 67, 1270–1276 (2024). https://doi.org/10.1007/s11426-023-1894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1894-1

Navigation