Skip to main content
Log in

Electric-field-controlled highly regioselective thiocyanation of N-containing heterocycles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Achieving highly regioselective synthesis in organic chemistry is challenging due to the uncontrollable orientation between reacting partners. External electric fields (EEFs) can influence the reactivity and selectivity of the substrate by causing directional adsorption. However, scalable and efficient techniques for using EEFs as “smart catalysts” have been lacking, hindering their application. In this study, we present a novel method for modifying the regioselectivity of quinoxaline-2(1H)-ones by functionalizing their C7-position using the electric double layer (EDL) theory. This approach led to moderate to good yields of the corresponding C7-thiocyanation products. DFT calculations and control experiments demonstrated that EEFs could reverse the regioselectivity of quinoxaline-2(1H)-ones, allowing the C7-thiocyanation to proceed via a radical reaction mechanism. Additionally, the resulting 7-thiocyano-1-methylquinoxaline-2(1H)-ones exhibited promising AIE properties. Our work showcases a promising strategy for achieving highly regioselective functionalization by aligning the electric field with the desired reaction/bond axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trost BM. Science, 1983, 219: 245–250

    Article  CAS  PubMed  Google Scholar 

  2. Kotha S, Ansari S, Gupta NK. Synlett, 2023, 34: 535–551

    Article  CAS  Google Scholar 

  3. Francke R, Little RD. Chem Soc Rev, 2014, 43: 2492–2521

    Article  CAS  PubMed  Google Scholar 

  4. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew Chem Int Ed, 2018, 57: 5594–5619

    Article  CAS  Google Scholar 

  6. Tang S, Liu Y, Lei A. Chem, 2018, 4: 27–45

    Article  CAS  Google Scholar 

  7. Jiang Y, Xu K, Zeng C. Chem Rev, 2018, 118: 4485–4540

    Article  CAS  PubMed  Google Scholar 

  8. Yuan Y, Yang J, Lei A. Chem Soc Rev, 2021, 50: 10058–10086

    Article  CAS  PubMed  Google Scholar 

  9. Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem Soc Rev, 2021, 50: 7941–8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem Rev, 2022, 122: 3180–3218

    Article  CAS  PubMed  Google Scholar 

  11. Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Sci Bull, 2021, 66: 2412–2429

    Article  CAS  Google Scholar 

  12. Sun GQ, Yu P, Zhang W, Zhang W, Wang Y, Liao LL, Zhang Z, Li L, Lu Z, Yu DG, Lin S. Nature, 2023, 615: 67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Cai Z, Warratz S, Ma C, Ackermann L. Sci China Chem, 2022, 66: 703–724

    Google Scholar 

  14. Maity R, Bankura A, Das I. Green Chem, 2023, 25: 7774–7781

    Article  CAS  Google Scholar 

  15. Zhang S, Findlater M. ACS Catal, 2023, 13: 8731–8751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaik S, Mandal D, Ramanan R. Nat Chem, 2016, 8: 1091–1098

    Article  CAS  PubMed  Google Scholar 

  17. Ciampi S, Darwish N, Aitken HM, Diez-Pérez I, Coote ML. Chem Soc Rev, 2018, 47: 5146–5164

    Article  CAS  PubMed  Google Scholar 

  18. Shaik S, Ramanan R, Danovich D, Mandal D. Chem Soc Rev, 2018, 47: 5125–5145

    Article  CAS  PubMed  Google Scholar 

  19. Shaik S, Danovich D, Joy J, Wang Z, Stuyver T. J Am Chem Soc, 2020, 142: 12551–12562

    Article  CAS  PubMed  Google Scholar 

  20. Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature, 2016, 531: 88–91

    Article  PubMed  Google Scholar 

  21. Huang X, Tang C, Li J, Chen LC, Zheng J, Zhang P, Le J, Li R, Li X, Liu J, Yang Y, Shi J, Chen Z, Bai M, Zhang HL, Xia H, Cheng J, Tian ZQ, Hong W. Sci Adv, 2019, 5: eaaw3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang C, Stuyver T, Lu T, Liu J, Ye Y, Gao T, Lin L, Zheng J, Liu W, Shi J, Shaik S, Xia H, Hong W. Nat Commun, 2023, 14: 3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carta A, Piras S, Loriga G, Paglietti G. Mini-Rev Med Chem, 2006, 6: 1179–1200

    Article  CAS  PubMed  Google Scholar 

  24. Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev Med Chem, 2018, 18: 392–413

    Article  CAS  PubMed  Google Scholar 

  25. Ke Q, Yan G, Yu J, Wu X. Org Biomol Chem, 2019, 17: 5863–5881

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh P, Das S. Synth Commun, 2020, 50: 2266–2312

    Article  CAS  Google Scholar 

  27. Liu X, Li W, Zhuang C, Cao H. Chin J Org Chem, 2021, 41: 3459–3481

    Article  CAS  Google Scholar 

  28. Hussain S, Parveen S, Qin X, Hao X, Zhang S, Chen X, Zhu C, Ma B. Bioorg Med Chem Lett, 2014, 24: 2086–2089

    Article  CAS  PubMed  Google Scholar 

  29. Che C, Chen X, Wang H, Li JQ, Xiao Y, Fu B, Qin Z. New J Chem, 2018, 42: 12773–12778

    Article  CAS  Google Scholar 

  30. Moon J, Ji HK, Ko N, Oh H, Park MS, Kim S, Ghosh P, Mishra NK, Kim IS. Arch Pharm Res, 2021, 44: 1012–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan JW, Zhang Y, Huang GC, Ma MY, Yang TY, Yang LR, Zhang SR, Mao P, Qu LB. Org Chem Front, 2021, 8: 6937–6949

    Article  CAS  Google Scholar 

  32. Gao R, Wang F, Geng X, Li CY, Wang L. Org Lett, 2022, 24: 7118–7122

    Article  CAS  PubMed  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Wallingford: Gaussian, Inc., 2019

    Google Scholar 

  34. Abegg PW, Ha TK. Mol Phys, 1974, 27: 763–767

    Article  CAS  Google Scholar 

  35. Ditchfield R, Hehre WJ, Pople JA. J Chem Phys, 1971, 54: 724–728

    Article  CAS  Google Scholar 

  36. Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305

    Article  CAS  PubMed  Google Scholar 

  37. Lu T, Chen Q. Comput Theor Chem, 2021, 1200: 113249

    Article  CAS  Google Scholar 

  38. Lu T, Chen F. J Mol Graph Model, 2012, 38: 314–323

    Article  PubMed  Google Scholar 

  39. Parr RG, Yang W. J Am Chem Soc, 1984, 106: 4049–4050

    Article  CAS  Google Scholar 

  40. Fu R, Lu T, Chen F. Acta Phys-Chim Sin, 2014, 30: 628–639

    Article  CAS  Google Scholar 

  41. Krishnan R, Binkley JS, Seeger R, Pople JA. J Chem Phys, 1980, 72: 650–654

    Article  CAS  Google Scholar 

  42. Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  43. Becke AD. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  44. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J Phys Chem, 1994, 98: 11623–11627

    Article  CAS  Google Scholar 

  45. Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456–1465

    Article  CAS  PubMed  Google Scholar 

  46. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  47. Humphrey W, Dalke A, Schulten K. J Mol Graph, 1996, 14: 33–38

    Article  CAS  PubMed  Google Scholar 

  48. Gu G, Huang M, Kim JK, Zhang J, Li Y, Wu Y. Green Chem, 2020, 22: 2543–2548

    Article  CAS  Google Scholar 

  49. Han L, Huang M, Li Y, Zhang J, Zhu Y, Kim JK, Wu Y. Org Chem Front, 2021, 8: 3110–3117

    Article  CAS  Google Scholar 

  50. Kong Y, Kim JK, Li Y, Zhang J, Huang M, Wu Y. Green Chem, 2021, 23: 1274–1279

    Article  CAS  Google Scholar 

  51. Gong M, Huang M, Li Y, Zhang J, Kim JK, Kim JS, Wu Y. Green Chem, 2022, 24: 837–845

    Article  CAS  Google Scholar 

  52. Dourado AHB. Electrochem, 2022, 3: 789–808

    Article  CAS  Google Scholar 

  53. Laviron E. J Electroanal Chem Interfacial Electrochem, 1974, 52: 355–393

    Article  CAS  Google Scholar 

  54. Zhang L, Liardet L, Luo J, Ren D, Grätzel M, Hu X. Nat Catal, 2019, 2: 366–373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21172200, 21302172), the Basic Research Training Project of Zhengzhou University (JC2020053021). This work was also supported by the National Research Foundation of Korea (CRI Project No. 2018R1A3B1052702 for Jong Seung Kim).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengmeng Huang, Yabo Li or Jong Seung Kim.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, M., Wu, Q., Kim, J.K. et al. Electric-field-controlled highly regioselective thiocyanation of N-containing heterocycles. Sci. China Chem. 67, 1263–1269 (2024). https://doi.org/10.1007/s11426-023-1885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1885-2

Navigation