Skip to main content
Log in

The synergism of sequential paired electrosynthesis with halogen bonding activation for the cyclization of organochlorides with olefins

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Reported herein is the design of a new catalytic paradigm by synergistically combining sequential paired electrosynthesis with halogen-bonding (XB) activation for the cyclization of organochlorides with olefins. This dual activation strategy enables rapid access to densely functionalized 2-alkylidene-tetrahydrofurans with exclusive Z-selectivities, which are challenging to be synthesized by other methods. 4,4′-Di-tert-butyl-2,2′-bipyridine (dtbbpy) showed an unprecedented reactivity as a XB acceptor to activate C-Cl bond by shifting its reduction potential positively by 220 mV. Distinctly different from previous electro-reductions of C-Cl bonds relying upon high electrode potentials or matched redox properties between mediators and organochlorides, the XB activator employed herein has no limit on the abovementioned redox property matching but can lower the applied electrode potentials The decreased operating potential allows broad functional group tolerance, which was highlighted by the late-stage functionalization of 11 examples of drugs and natural products-derived alkenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong P, Xu HC. Acc Chem Res, 2019, 52: 3339–3350

    Article  CAS  Google Scholar 

  2. Wang F, Stahl SS. Acc Chem Res, 2020, 53: 561–574

    Article  CAS  Google Scholar 

  3. Meyer TH, Choi I, Tian C, Ackermann L. Chem, 2020, 6: 2484–2496

    Article  CAS  Google Scholar 

  4. Siu JC, Fu N, Lin S. Acc Chem Res, 2020, 53: 547–560

    Article  CAS  Google Scholar 

  5. Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Sci Bull, 2021, 66: 2412–2429

    Article  CAS  Google Scholar 

  6. Cheng X, Lei A, Mei TS, Xu HC, Xu K, Zeng C. CCS Chem, 2022, 4: 1120–1152

    Article  CAS  Google Scholar 

  7. Ackermann L. Acc Chem Res, 2020, 53: 84–104

    Article  CAS  Google Scholar 

  8. Ma C, Fang P, Liu D, Jiao KJ, Gao PS, Qiu H, Mei TS. Chem Sci, 2021, 12: 12866–12873

    Article  CAS  Google Scholar 

  9. Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem Rev, 2022, 122: 3180–3218

    Article  CAS  Google Scholar 

  10. Duñach E, Medeiros MJ, Olivero S. Electrochim Acta, 2017, 242: 373–381

    Article  Google Scholar 

  11. Shimakoshi H, Hisaeda Y. Chem Rec, 2021, 21: 2080–2094

    Article  CAS  Google Scholar 

  12. Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature, 2022, 604: 292–297

    Article  CAS  Google Scholar 

  13. Mubarak MS, Peters DG. Curr Opin Electrochem, 2017, 2: 60–66

    Article  CAS  Google Scholar 

  14. Lu L, Li H, Zheng Y, Bu F, Lei A. CCS Chem, 2021, 3: 2669–2675

    Article  CAS  Google Scholar 

  15. Mitsudo K, Nakagawa Y, Mizukawa J, Tanaka H, Akaba R, Okada T, Suga S. Electrochim Acta, 2012, 82: 444–449

    Article  CAS  Google Scholar 

  16. Olivero S, Rolland JP, Duñach E. Organometallics, 1998, 17: 3747–3753

    Article  CAS  Google Scholar 

  17. Esteves AP, Freitas AM, Medeiros MJ, Pletcher D. J Electroanal Chem, 2001, 499: 95–102

    Article  CAS  Google Scholar 

  18. Gennaro A, Isse AA, Maran F. J Electroanal Chem, 2001, 507: 124–134

    Article  CAS  Google Scholar 

  19. Kim H, Kim H, Lambert TH, Lin S. J Am Chem Soc, 2020, 142: 2087–2092

    Article  CAS  Google Scholar 

  20. Cowper NGW, Chernowsky CP, Williams OP, Wickens ZK. J Am Chem Soc, 2020, 142: 2093–2099

    Article  CAS  Google Scholar 

  21. Tian X, Karl TA, Reiter S, Yakubov S, de Vivie-Riedle R, König B, Barham JP. Angew Chem Int Ed, 2021, 60: 20817–20825

    Article  CAS  Google Scholar 

  22. Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew Chem Int Ed, 2022, 61: e202107811

    CAS  Google Scholar 

  23. Wu S, Žurauskas J, Domański M, Hitzfeld PS, Butera V, Scott DJ, Rehbein J, Kumar A, Thyrhaug E, Hauer J, Barham JP. Org Chem Front, 2021, 8: 1132–1142

    Article  CAS  Google Scholar 

  24. Jeong DY, Lee DS, Lee HL, Nah S, Lee JY, Cho EJ, You Y. ACS Catal, 2022, 12: 6047–6059

    Article  CAS  Google Scholar 

  25. Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD. Chem Rev, 2015, 115: 7118–7195

    Article  CAS  Google Scholar 

  26. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem Rev, 2016, 116: 2478–2601

    Article  CAS  Google Scholar 

  27. Kolář MH, Hobza P. Chem Rev, 2016, 116: 5155–5187

    Article  Google Scholar 

  28. Robidas R, Reinhard DL, Legault CY, Huber SM. Chem Rec, 2021, 21: 1912–1927

    Article  CAS  Google Scholar 

  29. Tsuji N, Kobayashi Y, Takemoto Y. Chem Commun, 2014, 50: 13691–13694

    Article  CAS  Google Scholar 

  30. Castelli R, Schindler S, Walter SM, Kniep F, Overkleeft HS, Van der Marel GA, Huber SM, Codée JDC. Chem Asian J, 2014, 9: 2095–2098

    Article  CAS  Google Scholar 

  31. Fave C, Schöllhorn B. Curr Opin Electrochem, 2019, 15: 89–96

    Article  CAS  Google Scholar 

  32. Rasol NE, Naz H, Awang K, Ridhwan MJM, Choy YK, Ismail NH. Nat Prod Commun, 2017, 12: 1283–1286

    Google Scholar 

  33. Zhang S, Li L, Li J, Shi J, Xu K, Gao W, Zong L, Li G, Findlater M. Angew Chem Int Ed, 2021, 60: 7275–7282

    Article  CAS  Google Scholar 

  34. Jiang Y, Xu K, Zeng C. CCS Chem, 2022, 4: 1796–1805

    Article  CAS  Google Scholar 

  35. Tan Z, He X, Xu K, Zeng C. ChemSusChem, 2022, 15: e202102360

    CAS  Google Scholar 

  36. Hilt G. ChemElectroChem, 2020, 7: 395–405

    Article  CAS  Google Scholar 

  37. Wu T, Moeller KD. Angew Chem Int Ed, 2021, 60: 12883–12890

    Article  CAS  Google Scholar 

  38. Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI, Buchwald SL, Jensen KF. Science, 2020, 368: 1352–1357

    Article  CAS  Google Scholar 

  39. Dong X, Roeckl JL, Waldvogel SR, Morandi B. Science, 2021, 371: 507–514

    Article  CAS  Google Scholar 

  40. Claraz A, Masson G. ACS Org Inorg Au, 2022, 2: 126–147

    Article  CAS  Google Scholar 

  41. Yan X, Wang S, Liu Z, Luo Y, Wang P, Shi W, Qi X, Huang Z, Lei A. Sci China Chem, 2022, 65: 762–770

    Article  CAS  Google Scholar 

  42. Ang NWJ, Ackermann L. Chem Eur J, 2021, 27: 4883–4887

    Article  CAS  Google Scholar 

  43. Zhu C, Yue H, Jia J, Rueping M. Angew Chem Int Ed, 2021, 60: 17810–17831

    Article  CAS  Google Scholar 

  44. Claros M, Ungeheuer F, Franco F, Martin-Diaconescu V, Casitas A, Lloret-Fillol J. Angew Chem Int Ed, 2019, 58: 4869–4874

    Article  CAS  Google Scholar 

  45. Giedyk M, Narobe R, Weiß S, Touraud D, Kunz W, König B. Nat Catal, 2020, 3: 40–47

    Article  CAS  Google Scholar 

  46. The cathodic potential during the reaction at room temperature ranges from −1.52 to −1.65 V, which is sufficient to reduce the C-Cl bonds

  47. Kaur J, Shahin A, Barham JP. Org Lett, 2021, 23: 2002–2006

    Article  CAS  Google Scholar 

  48. Li T, Liang K, Tang J, Ding Y, Tong X, Xia C. Chem Sci, 2021, 12: 15655–15661

    Article  CAS  Google Scholar 

  49. Kato N, Nanjo T, Takemoto Y. ACS Catal, 2022, 12: 7843–7849

    Article  CAS  Google Scholar 

  50. Tasnim T, Ryan C, Christensen ML, Fennell CJ, Pitre SP. Org Lett, 2022, 24: 446–450

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871019, 22171015), Beijing Municipal Education Committee Project (KZ202110005003, KM202110005006), and Beijing Natural Science Foundation (2222003). We also extend our thanks to the Large-scale Instruments and Equipments Sharing Platform of Beijing University of Technology for NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Xu or Chengchu Zeng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1410_MOESM1_ESM.pdf

The Synergism of Sequential Paired Electrosynthesis with Halogen Bonding Activation for the Cyclization of Organochlorides with Olefins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, F., Xu, K. & Zeng, C. The synergism of sequential paired electrosynthesis with halogen bonding activation for the cyclization of organochlorides with olefins. Sci. China Chem. 66, 540–547 (2023). https://doi.org/10.1007/s11426-022-1410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1410-6

Keywords

Navigation