Skip to main content
Log in

Organoboron chemistry towards controlled and precise polymer synthesis

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organoboron reagents have garnered considerable attention due to their distinct properties. In recent years, boronic acids and boronate esters have been important intermediates for cross-coupling reactions and other functional group construction and are often used to synthesize small organic molecules, drugs, and bioactive substances. In this feature article, we encapsulate the strategy of harnessing the unique properties of organoboron reagents to overcome challenges encountered in conventional polymer synthesis. We delve into the synthesis of boron-containing monomers and polymer materials, unraveling the unique attributes of these newfound polymers while offering innovative insights into their application within recyclable or reprocessable materials. We develop organoboron-based photocatalysts, employing their inner-sphere electron transfer (ISET) mechanisms to initiate controlled radical polymerization. We utilize alkylborane to initiate controlled radical polymerization and further designed B-alkylcatecholboranes to prepare ultra-high molecular weight polymers. Notably, we also propose a liquid-phase synthesis method based on organoboron tags and apply it to the precise synthesis of sequence-controlled conjugated polymers. These advancements open up new frontiers in the realm of polymer science, and the versatility and potential of organoboron reagents in polymer synthesis continue to inspire exciting research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang K, Amin K, An Z, Cai Z, Chen H, Chen H, Dong Y, Feng X, Fu W, Gu J, Han Y, Hu D, Hu R, Huang D, Huang F, Huang F, Huang Y, Jin J, Jin X, Li Q, Li T, Li Z, Li Z, Liu J, Liu J, Liu S, Peng H, Qin A, Qing X, Shen Y, Shi J, Sun X, Tong B, Wang B, Wang H, Wang L, Wang S, Wei Z, Xie T, Xu C, Xu H, Xu ZK, Yang B, Yu Y, Zeng X, Zhan X, Zhang G, Zhang J, Zhang MQ, Zhang XZ, Zhang X, Zhang Y, Zhang Y, Zhao C, Zhao W, Zhou Y, Zhou Z, Zhu J, Zhu X, Tang BZ. Mater Chem Front, 2020, 4: 1803–1915

    Article  CAS  Google Scholar 

  2. Muñoz-Bonilla A, Fernández-García M. Prog Polym Sci, 2012, 37: 281–339

    Article  Google Scholar 

  3. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zau-scher S, Luzinov I, Minko S. Nat Mater, 2010, 9: 101–113

    Article  PubMed  Google Scholar 

  4. Szwarc M. Nature, 1956, 178: 1168–1169

    Article  CAS  Google Scholar 

  5. Szwarc M. J Polym Sci Polym Chem, 1998, 36: ix–xv

    Article  CAS  Google Scholar 

  6. Aoshima S, Kanaoka S. Chem Rev, 2009, 109: 5245–5287

    Article  PubMed  CAS  Google Scholar 

  7. Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C. Prog Polym Sci, 2020, 111: 101311

    Article  CAS  Google Scholar 

  8. Parkatzidis K, Wang HS, Truong NP, Anastasaki A. Chem, 2020, 6: 1575–1588

    Article  CAS  Google Scholar 

  9. Moad G, Rizzardo E, Thang SH. Acc Chem Res, 2008, 41: 1133–1142

    Article  PubMed  CAS  Google Scholar 

  10. Pan X, Fantin M, Yuan F, Matyjaszewski K. Chem Soc Rev, 2018, 47: 5457–5490

    Article  PubMed  CAS  Google Scholar 

  11. Lorandi F, Fantin M, Matyjaszewski K. J Am Chem Soc, 2022, 144: 15413–15430

    Article  PubMed  CAS  Google Scholar 

  12. Wang JS, Matyjaszewski K. J Am Chem Soc, 1995, 117: 5614–5615

    Article  CAS  Google Scholar 

  13. Pintauer T, Matyjaszewski K. Chem Soc Rev, 2008, 37: 1087–1097

    Article  PubMed  CAS  Google Scholar 

  14. Perrier S. Macromolecules, 2017, 50: 7433–7447

    Article  CAS  Google Scholar 

  15. Hill MR, Carmean RN, Sumerlin BS. Macromolecules, 2015, 48: 5459–5469

    Article  CAS  Google Scholar 

  16. Hawker CJ, Bosman AW, Harth E. Chem Rev, 2001, 101: 3661–3688

    Article  CAS  Google Scholar 

  17. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B. Prog Polym Sci, 2013, 38: 63–235

    Article  CAS  Google Scholar 

  18. Goto A, Ohno K, Fukuda T. Macromolecules, 1998, 31: 2809–2814

    Article  CAS  Google Scholar 

  19. Zhao Y, Yu M, Zhang S, Liu Y, Fu X. Macromolecules, 2014, 47: 6238–6245

    Article  CAS  Google Scholar 

  20. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Science, 2013, 341: 1238149

    Article  PubMed  Google Scholar 

  21. Seeman NC. Nature, 2003, 421: 427–431

    Article  PubMed  Google Scholar 

  22. Fyfe JWB, Watson AJB. Chem, 2017, 3: 31–55

    Article  CAS  Google Scholar 

  23. Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. New York: John Wiley & Sons, 2006

    Google Scholar 

  24. Brown HC. Acc Chem Res, 1969, 2: 65–72

    Article  CAS  Google Scholar 

  25. Ollivier C, Renaud P. Chem Rev, 2001, 101: 3415–3434

    Article  PubMed  CAS  Google Scholar 

  26. Miyaura N, Suzuki A. Chem Rev, 1995, 95: 2457–2483

    Article  CAS  Google Scholar 

  27. Gillis EP, Burke MD. J Am Chem Soc, 2007, 129: 6716–6717

    Article  PubMed  CAS  Google Scholar 

  28. Seo KB, Lee IH, Lee J, Choi I, Choi TL. J Am Chem Soc, 2018, 140: 4335–4343

    Article  PubMed  CAS  Google Scholar 

  29. Curran DP, Solovyev A, MakhloufBrahmi M, Fensterbank L, Malacria M, Lacôte E. Angew Chem Int Ed, 2011, 50: 10294–10317

    Article  CAS  Google Scholar 

  30. Pan X, Lacôte E, Lalevee J, Curran DP. J Am Chem Soc, 2012, 134: 5669–5674

    Article  PubMed  CAS  Google Scholar 

  31. Pan X, Vallet AL, Schweizer S, Dahbi K, Delpech B, Blanchard N, Graff B, Geib SJ, Curran DP, Lalevee J, Lacote E. J Am Chem Soc, 2013, 135: 10484–10491

    Article  PubMed  CAS  Google Scholar 

  32. Horn M, Mayr H, Lacôte E, Merling E, Deaner J, Wells S, McFadden T, Curran DP. Org Lett, 2012, 14: 82–85

    Article  PubMed  CAS  Google Scholar 

  33. Dai W, Geib SJ, Curran DP. J Am Chem Soc, 2020, 142: 6261–6267

    Article  PubMed  Google Scholar 

  34. He C, Dong J, Xu C, Pan X. ACS Polym Au, 2023, 3: 5–27

    Article  CAS  Google Scholar 

  35. Shao X, Wang J, Marder TB, Xie Z, Liu J, Wang L. Macromolecules, 2021, 54: 6718–6725

    Article  CAS  Google Scholar 

  36. Yan Y, Zhou L, Sun Z, Song D, Cheng Y. Bioactive Mater, 2022, 7: 333–340

    Article  CAS  Google Scholar 

  37. Zhang J, Landry MP, Barone PW, Kim JH, Lin S, Ulissi ZW, Lin D, Mu B, Boghossian AA, Hilmer AJ, Rwei A, Hinckley AC, Kruss S, Shandell MA, Nair N, Blake S, Şen F, Şen S, Croy RG, Li D, Yum K, Ahn JH, Jin H, Heller DA, Essigmann JM, Blankschtein D, Strano MS. NatNanotech, 2013, 8: 959–968

    CAS  Google Scholar 

  38. Röttger M, Domenech T, van der Weegen R, Breuillac A, Nicolaÿ R, Leibler L. Science, 2017, 356: 62–65

    Article  PubMed  Google Scholar 

  39. Brooks WLA, Sumerlin BS. Chem Rev, 2016, 116: 1375–1397

    Article  PubMed  CAS  Google Scholar 

  40. Wan WM, Li SS, Liu DM, Lv XH, Sun XL. Macromolecules, 2017, 50: 6872–6879

    Article  CAS  Google Scholar 

  41. Aguirre-Chagala YE, Santos JL, Aguilar-Castillo BA, Herrera-Alonso M. ACS Macro Lett, 2014, 3: 353–358

    Article  PubMed  CAS  Google Scholar 

  42. Dai C, Yang D, Zhang W, Fu X, Chen Q, Zhu C, Cheng Y, Wang L. J Mater Chem B, 2015, 3: 7030–7036

    Article  PubMed  CAS  Google Scholar 

  43. Kubo T, Scheutz GM, Latty TS, Sumerlin BS. Chem Commun, 2019, 55: 5655–5658

    Article  CAS  Google Scholar 

  44. He C, Pan X. Macromolecules, 2020, 53: 3700–3708

    Article  CAS  Google Scholar 

  45. Li X, He C, Matyjaszewski K, Pan X. ACS Macro Lett, 2021, 10: 1327–1332

    Article  PubMed  CAS  Google Scholar 

  46. Dong J, He C, Xu C, Yun J, Pan X. Polym Chem, 2022, 13: 6408–6414

    Article  CAS  Google Scholar 

  47. Makino H, Nishikawa T, Ouchi M. Chem Commun, 2021, 57: 7410–7413

    Article  CAS  Google Scholar 

  48. Nishikawa T, Ouchi M. Angew Chem Int Ed, 2019, 58: 12435–12439

    Article  CAS  Google Scholar 

  49. Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Prog Polym Sci, 2016, 62: 73–125

    Article  CAS  Google Scholar 

  50. Lin CY, Coote ML, Gennaro A, Matyjaszewski K. J Am Chem Soc, 2008, 130: 12762–12774

    Article  PubMed  CAS  Google Scholar 

  51. Fang C, Fantin M, Pan X, de Fiebre K, Coote ML, Matyjaszewski K, Liu P. J Am Chem Soc, 2019, 141: 7486–7497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wang Q, Bai FY, Wang Y, Niu F, Zhang Y, Mi Q, Hu K, Pan X. J Am Chem Soc, 2022, 144: 19942–19952

    Article  PubMed  CAS  Google Scholar 

  53. Lv C, He C, Pan X. Angew Chem Int Ed, 2018, 57: 9430–9433

    Article  CAS  Google Scholar 

  54. Lv CN, Li N, Du YX, Li JH, Pan XC. Chin J Polym Sci, 2020, 38: 1178–1184

    Article  CAS  Google Scholar 

  55. Li N, Pan XC. Chin J Polym Sci, 2021, 39: 1084–1092

    Article  CAS  Google Scholar 

  56. Li N, Yang S, Huang Z, Pan X. Macromolecules, 2021, 54: 6000–6005

    Article  CAS  Google Scholar 

  57. Wang Y, Wang Q, Pan X. Cell Rep Phys Sci, 2020, 1: 100073

    Article  Google Scholar 

  58. Barnes JC, Ehrlich DJC, Gao AX, Leibfarth FA, Jiang Y, Zhou E, Jamison TF, Johnson JA. Nat Chem, 2015, 7: 810–815

    Article  PubMed  CAS  Google Scholar 

  59. Huang Z, Noble BB, Corrigan N, Chu Y, Satoh K, Thomas DS, Hawker CJ, Moad G, Kamigaito M, Coote ML, Boyer C, Xu J. J Am Chem Soc, 2018, 140: 13392–13406

    Article  PubMed  CAS  Google Scholar 

  60. Xu C, He C, Li N, Yang S, Du Y, Matyjaszewski K, Pan X. Nat Commun, 2021, 12: 5853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pan X, Fang C, Fantin M, Malhotra N, So WY, Peteanu LA, Isse AA, Gennaro A, Liu P, Matyjaszewski K. J Am Chem Soc, 2016, 138: 2411–2425

    Article  PubMed  CAS  Google Scholar 

  62. Yeow J, Chapman R, Gormley AJ, Boyer C. Chem Soc Rev, 2018, 47: 4357–4387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Du Y, He C, Yang S, Xu C, Pan X. Eur Polym J, 2023, 182: 111720

    Article  CAS  Google Scholar 

  64. Lv C, Du Y, Pan X. J Polym Sci, 2020, 58: 14–19

    Article  CAS  Google Scholar 

  65. An Z. ACS Macro Lett, 2020, 9: 350–357

    Article  PubMed  CAS  Google Scholar 

  66. Corrigan N, Jung K, Boyer C. Chem, 2020, 6: 1212–1214

    Article  CAS  Google Scholar 

  67. Carmean RN, Figg CA, Scheutz GM, Kubo T, Sumerlin BS. ACS Macro Lett, 2017, 6: 185–189

    Article  PubMed  CAS  Google Scholar 

  68. Merrifield RB. J Am Chem Soc, 1963, 85: 2149–2154

    Article  CAS  Google Scholar 

  69. Engelis NG, Anastasaki A, Nurumbetov G, Truong NP, Nikolaou V, Shegiwal A, Whittaker MR, Davis TP, Haddleton DM. Nat Chem, 2017, 9: 171–178

    Article  PubMed  CAS  Google Scholar 

  70. Antonopoulou MN, Whitfield R, Truong NP, Wyers D, Harrisson S, Junkers T, Anastasaki A. Nat Chem, 2022, 14: 304–312

    Article  PubMed  CAS  Google Scholar 

  71. Lee J, Park H, Hwang SH, Lee IH, Choi TL. Macromolecules, 2020, 53: 3306–3314

    Article  CAS  Google Scholar 

  72. Sun H, Kabb CP, Sims MB, Sumerlin BS. Prog Polym Sci, 2019, 89: 61–75

    Article  CAS  Google Scholar 

  73. Xu C, Dong J, He C, Yun J, Pan X. Giant, 2023, 14: 100154

    Article  CAS  Google Scholar 

  74. Blair DJ, Chitti S, Trobe M, Kostyra DM, Haley HMS, Hansen RL, Ballmer SG, Woods TJ, Wang W, Mubayi V, Schmidt MJ, Pipal RW, Morehouse GF, Palazzolo Ray AME, Gray DL, Gill AL, Burke MD. Nature, 2022, 604: 92–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kim CS, Cho S, Lee JH, Cho WK, Son K. Langmuir, 2020, 36: 11538–11545

    Article  PubMed  CAS  Google Scholar 

  76. Timmins RL, Wilson OR, Magenau AJD. J Polym Sci, 2020, 58: 1463–1471

    Article  CAS  Google Scholar 

  77. Yin J, Jacobse PH, Pyle D, Wang Z, Crommie MF, Dong G. J Am Chem Soc, 2022, 144: 16012–16019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22271057, 22201045), the Natural Science Foundation of Shanghai (22ZR1406000), the State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Fudan University. This paper is dedicated to Prof. Dennis P. Curran on the occasion of his 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangcheng Pan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Dong, J., Xu, C. et al. Organoboron chemistry towards controlled and precise polymer synthesis. Sci. China Chem. 66, 3467–3483 (2023). https://doi.org/10.1007/s11426-023-1797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1797-1

Keywords

Navigation