Skip to main content
Log in

Photocatalyzed ditrifluoromethylthiolation of alkenes with CF3SO2Na

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Since the first report of sodium trifluoromethanesulfinate (CF3SO2Na) as an electrophilic trifluoromethylthiolation reagent in 2015, there has been no breakthrough in research in this field. Herein, we disclose an unprecedented usage of CF3SO2Na as a radical trifluoromethylthiolation reagent. A photocatalyzed ditrifluoromethylthiolation of alkenes with CF3SO2Na in the presence of PPh3 and catalytic copper has been developed. Interestingly, either Ir[(p-Fppy)2(bpy)]PF6 or Ir(ppy)3 could facilitate this transformation. Mechanistic studies indicate that initiation of the radical chain proceeded via two different photocatalytic quenching mechanisms. This protocol provides a practical method for the construction of diverse vicinal ditrifluoromethylthiolated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leo A, Hansch C, Elkins D. Chem Rev, 1971, 71: 525–616

    Article  CAS  Google Scholar 

  2. Hansch C, Leo A, Taft RW. Chem Rev, 1991, 91: 165–195

    Article  CAS  Google Scholar 

  3. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Chem Rev, 2010, 110: 2858–2902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pimlott SL, Sutherland A. Chem Soc Rev, 2011, 40: 149–162

    Article  PubMed  CAS  Google Scholar 

  5. Zhu L, Ploessl K, Kung HF. Chem Soc Rev, 2014, 43: 6683–6691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yang B, Xu XH, Qing FL. Org Lett, 2015, 17: 1906–1909

    Article  PubMed  CAS  Google Scholar 

  7. Chen C, Luo Y, Fu L, Chen P, Lan Y, Liu G. J Am Chem Soc, 2018, 140: 1207–1210

    Article  PubMed  CAS  Google Scholar 

  8. Liang S, Wei J, Jiang L, Liu J, Mumtaz Y, Yi W. CCS Chem, 2021, 3: 265–273

    Article  CAS  Google Scholar 

  9. Lv Y, Pu W, Cui H, He J, Zhang Q. Synth Commun, 2016, 46: 1223–1229

    Article  CAS  Google Scholar 

  10. Cisneros JA, Robertson MJ, Mercado BQ, Jorgensen WL. ACS Med Chem Lett, 2017, 8: 124–127

    Article  PubMed  CAS  Google Scholar 

  11. Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S. J Med Chem, 2019, 62: 5628–5637

    Article  PubMed  CAS  Google Scholar 

  12. Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L. J Chem Inf Model, 2007, 47: 2140–2148

    Article  PubMed  CAS  Google Scholar 

  13. Liu H, Ge H, Shen Q. Reagents for direct trifluoromethylthiolation. In: Cahard D, Ma JA, Eds. Emerging Fluorinated Motifs: Synthesis, Properties, and Applications. Volume 2. Weinheim: Wiley-VCH, 2020. 309–341

    Chapter  Google Scholar 

  14. Xu C, Wang S, Shen Q. ACS Sustain Chem Eng, 2022, 10: 6889–6899

    Article  CAS  Google Scholar 

  15. Ferry A, Billard T, Langlois B, Bacqué E. Angew Chem Int Ed, 2009, 48: 8551–8555

    Article  CAS  Google Scholar 

  16. Xu C, Ma B, Shen Q. Angew Chem Int Ed, 2014, 53: 9316–9320

    Article  CAS  Google Scholar 

  17. Zhang P, Li M, Xue XS, Xu C, Zhao Q, Liu Y, Wang H, Guo Y, Lu L, Shen Q. J Org Chem, 2016, 81: 7486–7509

    Article  PubMed  CAS  Google Scholar 

  18. Li M, Xue XS, Cheng JP. ACS Catal, 2017, 7: 7977–7986

    Article  CAS  Google Scholar 

  19. Liu X, Liang Y, Ji J, Luo J, Zhao X. J Am Chem Soc, 2018, 140: 4782–4786

    Article  PubMed  CAS  Google Scholar 

  20. Shao X, Wang X, Yang T, Lu L, Shen Q. Angew Chem Int Ed, 2013, 52: 3457–3460

    Article  CAS  Google Scholar 

  21. Hu F, Shao X, Zhu D, Lu L, Shen Q. Angew Chem Int Ed, 2014, 53: 6105–6109

    Article  CAS  Google Scholar 

  22. Vinogradova EV, Müller P, Buchwald SL. Angew Chem Int Ed, 2014, 53: 3125–3128

    Article  CAS  Google Scholar 

  23. Lu K, Li Q, Xi X, Huang Y, Gong Z, Yu P, Zhao X. Org Chem Front, 2018, 5: 3088–3092

    Article  CAS  Google Scholar 

  24. Ghosh A, Lecomte M, Kim-Lee SH, Radosevich AT. Angew Chem Int Ed, 2019, 58: 2864–2869

    Article  CAS  Google Scholar 

  25. Xiang H, Liu J, Wang J, Jiang L, Yi W. Org Lett, 2022, 24: 181–185

    Article  PubMed  CAS  Google Scholar 

  26. Teverovskiy G, Surry DS, Buchwald SL. Angew Chem Int Ed, 2011, 50: 7312–7314

    Article  CAS  Google Scholar 

  27. Chen C, Xie Y, Chu L, Wang RW, Zhang X, Qing FL. Angew Chem Int Ed, 2012, 51: 2492–2495

    Article  CAS  Google Scholar 

  28. Zhang CP, Vicic DA. J Am Chem Soc, 2012, 134: 183–185

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Zhou Y, Ji G, Wu G, Li M, Zhang Y, Wang J. Eur J Org Chem, 2014, 2014(15): 3093–3096

    Article  CAS  Google Scholar 

  30. Yin G, Kalvet I, Englert U, Schoenebeck F. J Am Chem Soc, 2015, 137: 4164–4172

    Article  PubMed  CAS  Google Scholar 

  31. Yin F, Wang XS. Org Lett, 2014, 16: 1128–1131

    Article  PubMed  CAS  Google Scholar 

  32. Liu YL, Xu XH, Qing FL. Adv Synth Catal, 2020, 362: 5031–5035

    Article  CAS  Google Scholar 

  33. Zheng C, Huang S, Liu Y, Jiang C, Zhang W, Fang G, Hong J. Org Lett, 2020, 22: 4868–4872

    Article  PubMed  CAS  Google Scholar 

  34. Yang WC, Zhang MM, Sun Y, Chen CY, Wang L. Org Lett, 2021, 23: 6691–6696

    Article  PubMed  CAS  Google Scholar 

  35. Honeker R, Garza-Sanchez RA, Hopkinson MN, Glorius F. Chem Eur J, 2016, 22: 4395–4399

    Article  PubMed  CAS  Google Scholar 

  36. Dagousset G, Simon C, Anselmi E, Tuccio B, Billard T, Magnier E. Chem Eur J, 2017, 23: 4282–4286

    Article  PubMed  CAS  Google Scholar 

  37. Li Y, Koike T, Akita M. Asian J Org Chem, 2017, 6: 445–448

    Article  CAS  Google Scholar 

  38. Zhu M, Li R, You Q, Fu W, Guo W. Asian J Org Chem, 2019, 8: 2002–2005

    Article  CAS  Google Scholar 

  39. Zhang Q, Li X, Zhang W, Wang Y, Pan Y. Org Lett, 2021, 23: 5410–5414

    Article  PubMed  CAS  Google Scholar 

  40. Langlois BR, Laurent E, Roidot N. Tetrahedron Lett, 1992, 33: 1291–1294

    Article  CAS  Google Scholar 

  41. Langlois B, Montègre D, Roidot N. J Fluorine Chem, 1994, 68: 63–66

    Article  CAS  Google Scholar 

  42. Magnier E, Blazejewski JC, Tordeux M, Wakselman C. Angew Chem Int Ed, 2006, 45: 1279–1282

    Article  CAS  Google Scholar 

  43. Yang YD, Iwamoto K, Tokunaga E, Shibata N. Chem Commun, 2013, 49: 5510–5512

    Article  CAS  Google Scholar 

  44. Meng QY, Döben N, Studer A. Angew Chem Int Ed, 2020, 59: 19956–19960

    Article  CAS  Google Scholar 

  45. Song L, Fu DM, Chen L, Jiang YX, Ye JH, Zhu L, Lan Y, Fu Q, Yu DG. Angew Chem Int Ed, 2020, 59: 21121–21128

    Article  CAS  Google Scholar 

  46. Jiang L, Qian J, Yi W, Lu G, Cai C, Zhang W. Angew Chem Int Ed, 2015, 54: 14965–14969

    Article  CAS  Google Scholar 

  47. Yang Y, Xu L, Yu S, Liu X, Zhang Y, Vicic DA. Chem Eur J, 2016, 22: 858–863

    Article  PubMed  CAS  Google Scholar 

  48. Ouyang Y, Xu XH, Qing FL. Angew Chem Int Ed, 2019, 58: 18508–18512

    Article  CAS  Google Scholar 

  49. Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Chem Rev, 2022, 122: 1485–1542

    Article  PubMed  CAS  Google Scholar 

  50. Singh A, Teegardin K, Kelly M, Prasad KS, Krishnan S, Weaver JD. J Organomet Chem, 2015, 776: 51–59

    Article  CAS  Google Scholar 

  51. Teegardin K, Day JI, Chan J, Weaver J. Org Process Res Dev, 2016, 20: 1156–1163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yang Y, Saffon-Merceron N, Vantourout JC, Tlili A. Chem Sci, 2023, 14: 3893–3898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ma L, Cheng XF, Li Y, Wang XS. Tetrahedron Lett, 2016, 57: 2972–2975

    Article  CAS  Google Scholar 

  54. Zhang M, Lin JH, Xiao JC. Angew Chem Int Ed, 2019, 58: 6079–6083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22078161, 22108124), the Postdoctoral Science Foundation Funded Project (2019M661848), the Fundamental Research Funds for the Central Universities (30922010403), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Center for Advanced Materials and Technology in Nanjing University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lvqi Jiang, Jie Liu or Wenbin Yi.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Jiang, L., Hu, C. et al. Photocatalyzed ditrifluoromethylthiolation of alkenes with CF3SO2Na. Sci. China Chem. 67, 587–594 (2024). https://doi.org/10.1007/s11426-023-1781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1781-6

Navigation