Skip to main content
Log in

Organocatalytic asymmetric [2 + 2] cycloaddition of alkynes with quinones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A chiral phosphoric acid catalyzed enantioselective [2 + 2] cycloaddition of alkynylindols or alkynylnaphthols with quinones is disclosed. A class of functionalized cyclobutenes with excellent yields, diastereo- and enantioselectivities were prepared under mild reaction conditions (70 examples, up to 99% yield, 99% ee, all > 50:1 dr). Mechanistic studies revealed that a dearomatization of indole or naphthol occurred to initiate the cycloaddition, followed by an intramolecular Michael addition with in situ generated allene-iminium or vinylidene-quinone methide intermediate. The competitive [2 + 3] cycloaddition was prevented in this catalytic system. An interesting central to axial chirality conversion via a rearrangement process was realized during transformation of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carreira EM, Fessard TC. Chem Rev, 2014, 114: 8257–8322

    Article  CAS  PubMed  Google Scholar 

  2. Misale A, Niyomchon S, Maulide N. Acc Chem Res, 2016, 49: 2444–2458

    Article  CAS  PubMed  Google Scholar 

  3. Semmelhack MF, Tomoda S. J Am Chem Soc, 1981, 103: 2427–2428

    Article  CAS  Google Scholar 

  4. Lee-Ruff E, Mladenova G. Chem Rev, 2003, 103: 1449–1484

    Article  CAS  PubMed  Google Scholar 

  5. Namyslo JC, Kaufmann DE. Chem Rev, 2003, 103: 1485–1538

    Article  CAS  PubMed  Google Scholar 

  6. Gauvry N, Lescop C, Huet F. Eur J Org Chem, 2006, 2006: 5207–5218

    Article  Google Scholar 

  7. Xu Y, Conner ML, Brown MK. Angew Chem Int Ed, 2015, 54: 11918–11928

    Article  CAS  Google Scholar 

  8. Frébault F, Luparia M, Oliveira M, Goddard R, Maulide N. Angew Chem Int Ed, 2010, 49: 5672–5676

    Article  Google Scholar 

  9. Zhong C, Huang Y, Zhang H, Zhou Q, Liu Y, Lu P. Angew Chem Int Ed, 2020, 59: 2750–2754

    Article  CAS  Google Scholar 

  10. Pirenne V, Traboulsi I, Rouvière L, Lusseau J, Massip S, Bassani DM, Robert F, Landais Y. Org Lett, 2020, 22: 575–579

    Article  CAS  PubMed  Google Scholar 

  11. Shibata T, Takami K, Kawachi A. Org Lett, 2006, 8: 1343–1345

    Article  CAS  PubMed  Google Scholar 

  12. Fan BM, Li XJ, Peng FZ, Zhang HB, Chan ASC, Shao ZH. Org Lett, 2010, 12: 304–306

    Article  CAS  PubMed  Google Scholar 

  13. Schotes C, Mezzetti A. Angew Chem Int Ed, 2011, 50: 3072–3074

    Article  CAS  Google Scholar 

  14. Hu J, Yang Q, Yu L, Xu J, Liu S, Huang C, Wang L, Zhou Y, Fan B. Org Biomol Chem, 2013, 11: 2294–2301

    Article  CAS  PubMed  Google Scholar 

  15. Kossler D, Cramer N. Chem Sci, 2017, 8: 1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiao Z, Shi Q, Zhou JS. Angew Chem Int Ed, 2017, 56: 14567–14571

    Article  CAS  Google Scholar 

  17. García-Morales C, Ranieri B, Escofet I, López-Suarez L, Obradors C, Konovalov AI, Echavarren AM. J Am Chem Soc, 2017, 139: 13628–13631

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parsutkar MM, Pagar VV, RajanBabu TV. J Am Chem Soc, 2019, 141: 15367–15377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Narasaka K, Hayashi Y, Shimadzu H, Niihata S. J Am Chem Soc, 1992, 114: 8869–8885

    Article  CAS  Google Scholar 

  20. Takenaka Y, Ito H, Hasegawa M, Iguchi K. Tetrahedron, 2006, 62: 3380–3388

    Article  CAS  Google Scholar 

  21. Ishihara K, Fushimi M. J Am Chem Soc, 2008, 130: 7532–7533

    Article  CAS  PubMed  Google Scholar 

  22. Enomoto K, Oyama H, Nakada M. Chem Eur J, 2015, 21: 2798–2802

    Article  CAS  PubMed  Google Scholar 

  23. Kang T, Ge S, Lin L, Lu Y, Liu X, Feng X. Angew Chem Int Ed, 2016, 55: 5541–5544

    Article  CAS  Google Scholar 

  24. Zhang M, Wang XC. Angew Chem Int Ed, 2021, 60: 17185–17190

    Article  CAS  Google Scholar 

  25. Maturi MM, Bach T. Angew Chem Int Ed, 2014, 53: 7661–7664

    Article  CAS  Google Scholar 

  26. Golfmann M, Glagow L, Giakoumidakis A, Golz C, Walker JCL. Chem Eur J, 2023, 29: e202202373

    Article  CAS  PubMed  Google Scholar 

  27. Yang P, Jia Q, Song S, Huang X. Nat Prod Rep, 2023, 40: 1094–1129

    Article  PubMed  Google Scholar 

  28. Yu H, Dong S, Yao Q, Chen L, Zhang D, Liu X, Feng X. Chem Eur J, 2018, 24: 19361–19367

    Article  CAS  PubMed  Google Scholar 

  29. Zhong X, Tang Q, Zhou P, Zhong Z, Dong S, Liu X, Feng X. Chem Commun, 2018, 54: 10511–10514

    Article  CAS  Google Scholar 

  30. Zhong X, Tan J, Qiao J, Zhou Y, Lv C, Su Z, Dong S, Feng X. Chem Sci, 2021, 12: 9991–9997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao W, Ning L, Xin S, Dong S, Liu X, Feng X. Angew Chem Int Ed, 2022, 61: e202211596

    CAS  Google Scholar 

  32. Reetz M, List B, Jaroch S, Weinmann H. Organocatalysis. Heidelberg: Springer Science & Business, 2008

    Book  Google Scholar 

  33. MacMillan DWC. Nature, 2008, 455: 304–308

    Article  CAS  PubMed  Google Scholar 

  34. Silvi M, Melchiorre P. Nature, 2018, 554: 41–49

    Article  CAS  PubMed  Google Scholar 

  35. Xiang SH, Tan B. Nat Commun, 2020, 11: 3786–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moyano A, Rios R. Chem Rev, 2011, 111: 4703–4832

    Article  CAS  PubMed  Google Scholar 

  37. Pellissier H. Tetrahedron, 2012, 68: 2197–2232

    Article  CAS  Google Scholar 

  38. Shi M, Wei Y, Zhao MX, Zhang J. Organocatalytic Cycloadditions for Synthesis of Carbo- and Heterocycles. Weinheim: Wiley-VCH, 2018

    Book  Google Scholar 

  39. Engler TA, Letavic MA, Reddy JP. J Am Chem Soc, 1991, 113: 5068–5070

    Article  CAS  Google Scholar 

  40. Brimble MA, Duncalf LJ, Reid DCW, Roberts TR. Tetrahedron, 1998, 54: 5363–5374

    Article  CAS  Google Scholar 

  41. Engler TA, Letavic MA, Iyengar R, LaTessa KO, Reddy JP. J Org Chem, 1999, 64: 2391–2405

    Article  CAS  Google Scholar 

  42. Zhou G, Corey EJ. J Am Chem Soc, 2005, 127: 11958–11959

    Article  CAS  PubMed  Google Scholar 

  43. Zheng H, Xu C, Wang Y, Kang T, Liu X, Lin L, Feng X. Chem Commun, 2017, 53: 6585–6588

    Article  CAS  Google Scholar 

  44. Trofimov B, Sobenina LN, Stepanova Z, Ushakov IA, Sinegovskaya L, Vakul’skaya T, Mikhaleva AI. Synthesis, 2010, 2010(3): 470–476

    Article  Google Scholar 

  45. Shoji T, Morita N, Maruyama M, Shimomura E, Maruyama A, Ito S, Yasunami M, Higashi J, Toyota K. Heterocycles, 2014, 88: 319–329

    Article  CAS  Google Scholar 

  46. Swager T, Dengiz C. Synlett, 2017, 28: 1427–1431

    Article  Google Scholar 

  47. Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Angew Chem Int Ed, 2022, 61

  48. Yang H, Sun HR, He RQ, Yu L, Hu W, Chen J, Yang S, Zhang GG, Zhou L. Nat Commun, 2022, 13: 632–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang LY, Yang L, Chen J, Zhou L. Synlett, 2023, 34: 1200–1214

    Article  Google Scholar 

  50. Sweis RF, Schramm MP, Kozmin SA. J Am Chem Soc, 2004, 126: 7442–7443

    Article  CAS  PubMed  Google Scholar 

  51. Shen L, Zhao K, Doitomi K, Ganguly R, Li YX, Shen ZL, Hirao H, Loh TP. J Am Chem Soc, 2017, 139: 13570–13578

    Article  CAS  PubMed  Google Scholar 

  52. Bai YB, Luo Z, Wang Y, Gao JM, Zhang L. J Am Chem Soc, 2018, 140: 5860–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zanini M, Cataffo A, Echavarren AM. Org Lett, 2021, 23: 8989–8993

    Article  CAS  PubMed  Google Scholar 

  54. Munakala A, Nallamilli T, Nanubolu JB, Chegondi R. Org Lett, 2022, 24: 892–896

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Hu M, Ding L, Wang Y, Wang XN, Chang J. Org Lett, 2022, 24: 5056–5061

    Article  CAS  PubMed  Google Scholar 

  56. Sultan S, Bhat MS, Rizvi MA, Shah BA. J Org Chem, 2019, 84: 8948–8958

    Article  CAS  PubMed  Google Scholar 

  57. Álvarez-García J, Rubio-Pisabarro V, Silva-López C, Cid MM. Org Lett, 2020, 22: 4527–4531

    Article  PubMed  Google Scholar 

  58. Liao L, Shu C, Zhang M, Liao Y, Hu X, Zhang Y, Wu Z, Yuan W, Zhang X. Angew Chem Int Ed, 2014, 53: 10471–10475

    Article  CAS  Google Scholar 

  59. Sun XX, Zhang HH, Li GH, Meng L, Shi F. Chem Commun, 2016, 52: 2968–2971

    Article  CAS  Google Scholar 

  60. Gelis C, Bekkaye M, Lebée C, Blanchard F, Masson G. Org Lett, 2016, 18: 3422–3425

    Article  CAS  PubMed  Google Scholar 

  61. Liu QJ, Zhu J, Song XY, Wang L, Wang SR, Tang Y. Angew Chem Int Ed, 2018, 57: 3810–3814

    Article  CAS  Google Scholar 

  62. Feng W, Yang H, Wang Z, Gou BB, Chen J, Zhou L. Org Lett, 2018, 20: 2929–2933

    Article  CAS  PubMed  Google Scholar 

  63. Akiyama T. Chem Rev, 2007, 107: 5744–5758

    Article  CAS  PubMed  Google Scholar 

  64. Terada M. Synthesis, 2010, 2010: 1929–1982

    Article  Google Scholar 

  65. Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev, 2014, 114: 9047–9153

    Article  CAS  PubMed  Google Scholar 

  66. Zhang X, Chen YH, Tan B. Tetrahedron Lett, 2018, 59: 473–486

    Article  CAS  Google Scholar 

  67. See Supporting Information for details.

  68. CCDC 2130886 (3d), 2175084 (3q), 2254781 (3as), 2174883 (6a′) and 2208602 (16b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

  69. Xia ZL, Xu-Xu QF, Zheng C, You SL. Chem Soc Rev, 2020, 49: 286–300

    Article  CAS  PubMed  Google Scholar 

  70. Zi W, Zuo Z, Ma D. Acc Chem Res, 2015, 48: 702–711

    Article  CAS  PubMed  Google Scholar 

  71. Zheng C, You SL. Nat Prod Rep, 2019, 36: 1589–1605

    Article  CAS  PubMed  Google Scholar 

  72. Sheng FT, Wang JY, Tan W, Zhang YC, Shi F. Org Chem Front, 2020, 7: 3967–3998

    Article  CAS  Google Scholar 

  73. Qin W, Liu Y, Yan H. Acc Chem Res, 2022, 55: 2780–2795

    Article  CAS  PubMed  Google Scholar 

  74. Liu H, Li K, Huang S, Yan H. Angew Chem Int Ed, 2022, 61: e202117063

    CAS  Google Scholar 

  75. Wang CS, Li TZ, Liu SJ, Zhang YC, Deng S, Jiao Y, Shi F. Chin J Chem, 2020, 38: 543–552

    Article  CAS  Google Scholar 

  76. Kang Q, Zhao ZA, You SL. Org Lett, 2008, 10: 2031–2034

    Article  CAS  PubMed  Google Scholar 

  77. Gu Q, Rong ZQ, Zheng C, You SL. J Am Chem Soc, 2010, 132: 4056–4057

    Article  CAS  PubMed  Google Scholar 

  78. Liao S, Čorić I, Wang Q, List B. J Am Chem Soc, 2012, 134: 10765–10768

    Article  CAS  PubMed  Google Scholar 

  79. Feng J, Yan W, Wang D, Li P, Sun Q, Wang R. Chem Commun, 2012, 48: 8003–8005

    Article  CAS  Google Scholar 

  80. Reid JP, Goodman JM. J Am Chem Soc, 2016, 138: 7910–7917

    Article  CAS  PubMed  Google Scholar 

  81. Melikian M, Gramüller J, Hioe J, Greindl J, Gschwind RM. Chem Sci, 2019, 10: 5226–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Santiago CB, Guo JY, Sigman MS. Chem Sci, 2018, 9: 2398–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reid JP. Commun Chem, 2021, 4: 171–174

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li K, Huang S, Liu T, Jia S, Yan H. J Am Chem Soc, 2022, 144: 7374–7381

    Article  CAS  PubMed  Google Scholar 

  85. Helliwell M, Thomas EJ, Whitehouse DL. Synthesis, 2005, 2005: 3235–3238

    Google Scholar 

  86. George J, Sherburn MS. J Org Chem, 2019, 84: 14712–14723

    Article  CAS  PubMed  Google Scholar 

  87. Varlet T, Gelis C, Retailleau P, Bernadat G, Neuville L, Masson G. Angew Chem Int Ed, 2020, 59: 8491–8496

    Article  CAS  Google Scholar 

  88. Nguyen TT. Org Biomol Chem, 2019, 17: 6952–6963

    Article  CAS  PubMed  Google Scholar 

  89. Yang H, Chen J, Zhou L. Chem Asian J, 2020, 15: 2939–2951

    Article  CAS  PubMed  Google Scholar 

  90. Min XL, Zhang XL, Shen R, Zhang Q, He Y. Org Chem Front, 2022, 9: 2280–2292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 21672170), the Natural Science Basic Research Plan in Shaanxi Province of China (2021JZ-40), and Shaanxi Fundamental Science Research Project for Chemistry & Biology (22JHQ007). The calculations were performed at Chemical HPC Center of NWU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Chen or Ling Zhou.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, HR., Yang, L., Li, Y. et al. Organocatalytic asymmetric [2 + 2] cycloaddition of alkynes with quinones. Sci. China Chem. 66, 2292–2299 (2023). https://doi.org/10.1007/s11426-023-1658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1658-9

Navigation