Skip to main content
Log in

Metal-free multicomponent polymerization of activated diyne, electrophilic styrene and isocyanide towards highly substituted and functional poly(cyclopentadiene)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of a facile and efficient polymerization to prepare cyclopentadiene-containing polymers is of vital importance and highly desired. In this work, a metal-free multicomponent polymerization of activated diyne, electrophilic styrene and isocyanide for the preparation of highly substituted poly(cyclopentadiene) was established. Soluble and thermally stable polymers with high molecular weights are obtained in high yields under mild conditions. By introducing the tetraphenylethene or triphenylamine moiety into polymer backbones, the resultant polymers show unique aggregation-induced emission (AIE) characteristics. Interestingly, AIE polymers can also be generated in situ from non-AIE monomers. Moreover, the prepared polymers can generate photopatterns to function as photoresists and can also serve as visualizing agents to selectively stain the lipid droplets in live cells. This efficient polymerization will open up enormous opportunities for preparing functional cyclopentadiene-containing polymers applicable in diverse areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy JP, Castner KF. J Polym Sci Polym Chem Ed, 1979, 17: 2039–2054

    Article  CAS  Google Scholar 

  2. Kennedy JP, Castner K. J Polym Sci Polym Chem Ed, 1979, 17: 2055–2070

    Article  CAS  Google Scholar 

  3. Grubbs RH, Gibbons C, Kroll LRC, Bonds WD, Brubaker CH. J Am Chem Soc, 1973, 95: 2373–2375

    Article  CAS  Google Scholar 

  4. Stille JK, Plummer L. J Org Chem, 1961, 26: 4026–4029

    Article  CAS  Google Scholar 

  5. Glassner M, Kempe K, Schubert US, Hoogenboom R, Barner-Kowollik C. Chem Commun, 2011, 47: 10620–10622

    Article  CAS  Google Scholar 

  6. St. Amant AH, Discekici EH, Bailey SJ, Zayas MS, Song JA, Shankel SL, Nguyen SN, Bates MW, Anastasaki A, Hawker CJ, Read de Alaniz J. J Am Chem Soc, 2019, 141: 13619–13624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bailey SJ, Discekici EH, Barbon SM, Nguyen SN, Hawker CJ, Read de Alaniz J. Macromolecules, 2020, 53: 4917–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samoshin AV, Hawker CJ, Read de Alaniz J. ACS Macro Lett, 2014, 3: 753–757

    Article  CAS  PubMed  Google Scholar 

  9. Lee JC, Nishio A, Tomita I, Endo T. Macromolecules, 1997, 30: 5205–5212

    Article  CAS  Google Scholar 

  10. Tomita I, Ueda M. Macromol Symp, 2004, 209: 217–230

    Article  CAS  Google Scholar 

  11. Deng XX, Li L, Li ZL, Lv A, Du FS, Li ZC. ACS Macro Lett, 2012, 1: 1300–1303

    Article  CAS  PubMed  Google Scholar 

  12. Ihara E, Hara Y, Itoh T, Inoue K. Macromolecules, 2011, 44: 5955–5960

    Article  CAS  Google Scholar 

  13. Kakuchi R. Angew Chem Int Ed, 2014, 53: 46–48

    Article  CAS  Google Scholar 

  14. Kreye O, Tóth T, Meier MAR. J Am Chem Soc, 2011, 133: 1790–1792

    Article  CAS  PubMed  Google Scholar 

  15. Nimmi L, Serita K-I, Hiraoka S, Yokozawa T. J Polym Sci A Polym Chem, 2002, 40: 1236–1242

    Article  Google Scholar 

  16. Niimi L, Shiino K, Hiraoka S, Yokozawa T. Macromolecules, 2002, 35: 3490–3494

    Article  CAS  Google Scholar 

  17. Tuten BT, De Keer L, Wiedbrauk S, Van Steenberge PHM, D’hooge DR, Barner-Kowollik C. Angew Chem Int Ed, 2019, 58: 5672–5676

    Article  CAS  Google Scholar 

  18. Zhang Z, You Y, Hong C. Macromol Rapid Commun, 2018, 39: 1800362

    Article  Google Scholar 

  19. Li W, Wu X, Zhao Z, Qin A, Hu R, Tang BZ. Macromolecules, 2015, 48: 7747–7754

    Article  CAS  Google Scholar 

  20. Liu Y, Gao M, Lam JWY, Hu R, Tang BZ. Macromolecules, 2014, 47: 4908–4919

    Article  CAS  Google Scholar 

  21. Han T, Deng H, Qiu Z, Zhao Z, Zhang H, Zou H, Leung NLC, Shan G, Elsegood MRJ, Lam JWY, Tang BZ. J Am Chem Soc, 2018, 140: 5588–5598

    Article  CAS  PubMed  Google Scholar 

  22. Wei B, Li W, Zhao Z, Qin A, Hu R, Tang BZ. J Am Chem Soc, 2017, 139: 5075–5084

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Li B, Peng J, Wang B, Qin A, Tang BZ. Macromolecules, 2021, 54: 6753–6761

    Article  CAS  Google Scholar 

  24. Meier M, Hu R, Tang BZ. Macromol Rapid Commun, 2021, 42: 2100104

    Article  CAS  Google Scholar 

  25. Tang X, Zhang L, Hu R, Tang BZ. Sci China Chem, 2019, 37: 1264–1270

    Article  CAS  Google Scholar 

  26. Tian W, Hu R, Tang BZ. Macromolecules, 2018, 51: 9749–9757

    Article  CAS  Google Scholar 

  27. Hu R, Li W, Tang BZ. Macromol Chem Phys, 2016, 217: 213–224

    Article  CAS  Google Scholar 

  28. Tian T, Hu R, Tang BZ. J Am Chem Soc, 2018, 140: 6156–6163

    Article  CAS  PubMed  Google Scholar 

  29. Wu X, He J, Hu R, Tang BZ. J Am Chem Soc, 2021, 143: 15723–15731

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Zang Q, Yang F, Zhang H, Sun JZ, Tang BZ. J Am Chem Soc, 2019, 143: 3944–3950

    Article  Google Scholar 

  31. Liu X, Han T, Lam JWY, Tang BZ. Macromol Rapid Commun, 2021, 42: 2000386

    Article  CAS  Google Scholar 

  32. Gao Q, Xiong LH, Han T, Qiu Z, He X, Sung HHY, Kwok RTK, Williams ID, Lam JWY, Tang BZ. J Am Chem Soc, 2019, 141: 14712–14719

    Article  CAS  PubMed  Google Scholar 

  33. Huang H, Qiu Z, Han T, Kwok RTK, Lam JWY, Tang BZ. ACS Macro Lett, 2017, 6: 1352–1356

    Article  CAS  PubMed  Google Scholar 

  34. Lee IH, Kim H, Choi TL. J Am Chem Soc, 2013, 135: 3760–3763

    Article  CAS  PubMed  Google Scholar 

  35. Qi C, Zheng C, Hu R, Tang BZ. ACS Macro Lett, 2019, 8: 569–575

    Article  CAS  PubMed  Google Scholar 

  36. Song B, He B, Qin A, Tang BZ. Macromolecules, 2018, 51: 42–48

    Article  CAS  Google Scholar 

  37. Tang X, Zhang L, Hu R, Tang BZ. Chin J Chem, 2019, 37: 1264–1270

    Article  CAS  Google Scholar 

  38. Xu L, Hu R, Tang BZ. Macromolecules, 2017, 50: 6043–6053

    Article  CAS  Google Scholar 

  39. Xu L, Yang K, Hu R, Tang B. Synlett, 2018, 29: 2523–2528

    Article  CAS  Google Scholar 

  40. Xu L, Zhou T, Liao M, Hu R, Tang BZ. ACS Macro Lett, 2019, 8: 101–106

    Article  CAS  PubMed  Google Scholar 

  41. Hu Y, Han T, Yan N, Liu J, Liu X, Wang WX, Lam JWY, Tang BZ. Adv Funct Mater, 2019, 29: 1902240

    Article  Google Scholar 

  42. Wei B, Li W, Zhao Z, Qin A, Hu R, Tang BZ. J Am Chem Soc, 2017, 139: 5075–5084

    Article  CAS  PubMed  Google Scholar 

  43. He B, Huang J, Liu X, Zhang J, Lam JWY, Tang BZ. Prog Polym Sci, 2022, 126: 101503

    Article  CAS  Google Scholar 

  44. Worch JC, Stubbs CJ, Price MJ, Dove AP. Chem Rev, 2021, 121: 6744–6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Du J, Huang D, Li H, Qin A, Tang BZ, Li Y. Macromolecules, 2020, 53: 4932–4941

    Article  CAS  Google Scholar 

  46. Qin A, Jim CKW, Lu W, Lam JWY, Häussler M, Dong Y, Sung HHY, Williams ID, Wong GKL, Tang BZ. Macromolecules, 2007, 40: 2308–2317

    Article  CAS  Google Scholar 

  47. Daglar O, Çakmakçi E, Gunay US, Hizal G, Tunca U, Durmaz H. Eur Polym J, 2021, 154: 110532

    Article  CAS  Google Scholar 

  48. Pektas B, Sagdic G, Daglar O, Luleburgaz S, Gunay US, Hizal G, Tunca U, Durmaz H. Polymer, 2022, 253: 124989

    Article  CAS  Google Scholar 

  49. Arseneault M, Levesque I, Morin JF. Macromolecules, 2012, 45: 3687–3694

    Article  CAS  Google Scholar 

  50. Nair V, Menon RS, Beneesh PB, Sreekumar V, Bindu S. Org Lett, 2004, 6: 767–769

    Article  CAS  PubMed  Google Scholar 

  51. He B, Huang J, Zhang J, Liu X, Wang D, Sung HHY, Liu Y, Qin A, Lam JWY, Tang BZ. Sci China Chem, 2022, 65: 789–795

    Article  CAS  Google Scholar 

  52. Abdelmoniem AM, Ghozlan SAS, Abdelmoniem DM, Elwahy AHM, Abdelhamid IA. J Heterocyclic Chem, 2018, 55: 2792–2798

    Article  CAS  Google Scholar 

  53. Li Y, Li Z, Ablekim T, Ren T, Dong WJ. Phys Chem Chem Phys, 2014, 16: 26193–26202

    Article  CAS  PubMed  Google Scholar 

  54. Yang Z, Yin W, Zhang S, Shah I, Zhang B, Zhang S, Li Z, Lei Z, Ma H. ACS Appl Bio Mater, 2020, 3: 1187–1196

    Article  CAS  PubMed  Google Scholar 

  55. Tian Jr. H, Sedgwick AC, Han HH, Sen S, Chen GR, Zang Y, Sessler JL, James TD, Li J, He XP. Coord Chem Rev, 2021, 427: 213577

    Article  CAS  Google Scholar 

  56. Wang L, Chen X, Ran X, Tang H, Cao D. Dyes Pigm, 2022, 203: 110332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102, 22101028), the Research Grants Council of Hong Kong (16304819, 16305320, C6014-20W), the Innovation and Technology Commission (ITC-CNERC14SC01), the Natural Science Foundation of Guangdong Province (2019B121205002), Shenzhen Key laboratory of Functional Aggregate Materials (ZDSYS20212021222400001), and the Nissan Chemical Industries, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Sun, Benzhao He, Jacky W. Y. Lam or Ben Zhong Tang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2022_1467_MOESM1_ESM.pdf

Metal-free Multicomponent Polymerization of Activated Diyne, Electrophilic Styrene and Isocyanide towards Highly Substituted and Functional Poly(cyclopentadiene)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, X., Li, X. et al. Metal-free multicomponent polymerization of activated diyne, electrophilic styrene and isocyanide towards highly substituted and functional poly(cyclopentadiene). Sci. China Chem. 66, 863–869 (2023). https://doi.org/10.1007/s11426-022-1467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1467-7

Keywords

Navigation