Skip to main content
Log in

In-situ generation of poly(quinolizine)s via catalyst-free polyannulations of activated diyne and pyridines

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of new polymerization routes to afford N-heterocyclic polymers is of vital importance and highly desired for various practical applications. Herein, a facile and efficient polyannulation reaction of dual-activated alkyne and pyridines was developed to construct novel N-heterocyclic poly(quinolizine)s. This polymerization can proceed smoothly under catalyst-free conditions with 100% atom utilization to furnish poly(quinolizine)s with high molecular weights (up to 34,100) and well-defined structures in acceptable yields. The resulting polymers show good solubility, high thermal stability and strong red emission. Moreover, the prepared poly(quinolizine)s exhibit low cytotoxicity and can selectively label lysosomes in live cells. Considering the remarkable advantages of readily available raw materials, mild polymerization conditions, atom economy, and excellent product performance, this new and efficient polymerization tool will open up enormous opportunities for preparing functional N-heterocyclic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlheim M, Barzoukas M, Bedworth PV, Blanchard-Desce M, Fort A, Hu ZY, Marder SR, Perry JW, Runser C, Staehelin M, Zysset B. Science, 1996, 271: 335–337

    Article  Google Scholar 

  2. Mahesh K, Karpagam S, Pandian K. Top Curr Chem (Z), 2019, 377: 12

    Article  CAS  Google Scholar 

  3. Wang T, Zhang N, Bai W, Bao Y. Polym Chem, 2020, 11: 3095–3114

    Article  CAS  Google Scholar 

  4. Dai C, Liu B. Energy Environ Sci, 2020, 13: 24–52

    Article  CAS  Google Scholar 

  5. Mao T, Liu G, Wu H, Wei Y, Gou Y, Wang J, Tao L. J Am Chem Soc, 2018, 140: 6865–6872

    Article  CAS  PubMed  Google Scholar 

  6. Song B, Hu K, Qin A, Tang BZ. Macromolecules, 2018, 51: 7013–7018

    Article  CAS  Google Scholar 

  7. Sheberla D, Patra S, Wijsboom YH, Sharma S, Sheynin Y, Haj-Yahia AE, Barak AH, Gidron O, Bendikov M. Chem Sci, 2015, 6: 360–371

    Article  CAS  PubMed  Google Scholar 

  8. Geervliet TA, Gavrila I, Iasilli G, Picchioni F, Pucci A. Chem Asian J, 2019, 14: 877–883

    Article  CAS  PubMed  Google Scholar 

  9. Osaka I, McCullough RD. Acc Chem Res, 2008, 41: 1202–1214

    Article  CAS  PubMed  Google Scholar 

  10. Linh NN, Duong TTT, Hien N, Trung VQ. Vietnam J Chem, 2020, 58: 1–9

    Article  CAS  Google Scholar 

  11. Sohn H, Sailor MJ, Magde D, Trogler WC. J Am Chem Soc, 2003, 125: 3821–3830

    Article  CAS  PubMed  Google Scholar 

  12. Liu W, Luo X, Bao Y, Liu YP, Ning GH, Abdelwahab I, Li L, Nai CT, Hu ZG, Zhao D, Liu B, Quek SY, Loh KP. Nat Chem, 2017, 9: 563–570

    Article  CAS  PubMed  Google Scholar 

  13. Chen L, Ruan C, Yang R, Wang YZ. Polym Chem, 2014, 5: 3737–3749

    Article  CAS  Google Scholar 

  14. Vu KB, Vu VV, Thi Thu HP, Giang HN, Tam NM, Ngo ST. Synth Met, 2018, 246: 128–136

    Article  CAS  Google Scholar 

  15. Ciardelli F, Ruggeri G, Pucci A. Chem Soc Rev, 2013, 42: 857–870

    Article  CAS  PubMed  Google Scholar 

  16. Wang LX, Li XG, Yang YL. React Funct Polym, 2001, 47: 125–139

    Article  CAS  Google Scholar 

  17. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS. Prog Polym Sci, 2012, 37: 907–974

    Article  CAS  Google Scholar 

  18. Li H, Sun J, Qin A, Tang BZ. Chin J Polym Sci, 2012, 30: 1–15

    Article  CAS  Google Scholar 

  19. Qin A, Lam JWY, Jim CKW, Zhang L, Yan J, Häussler M, Liu J, Dong Y, Liang D, Chen E, Jia G, Tang BZ. Macromolecules, 2008, 41: 3808–3822

    Article  CAS  Google Scholar 

  20. Truong VX, Ablett MP, Gilbert HTJ, Bowen J, Richardson SM, Hoyland JA, Dove AP. Biomater Sci, 2014, 2: 167–175

    Article  CAS  PubMed  Google Scholar 

  21. He B, Zhang J, Zhang H, Liu Z, Zou H, Hu R, Qin A, Kwok RTK, Lam JWY, Tang BZ. Macromolecules, 2020, 53: 3756–3764

    Article  CAS  Google Scholar 

  22. Xu L, Zhou T, Liao M, Hu R, Tang BZ. ACS Macro Lett, 2019, 8: 101–106

    Article  CAS  Google Scholar 

  23. Hu Y, Yan N, Liu X, Pei L, Ye C, Wang W-X, Lam JWY, Tang BZ. CCS Chem, 2021, 3: 2226–2238

    Google Scholar 

  24. Fu W, Dong L, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Macromolecules, 2018, 51: 3254–3263

    Article  CAS  Google Scholar 

  25. Liu Y, Gao M, Zhao Z, Lam JWY, Tang BZ. Polym Chem, 2016, 7: 5436–5444

    Article  CAS  Google Scholar 

  26. Schwartz A, Pál Z, Szabó L, Simon K, Hermecz I, Mészáros Z. J Heterocyclic Chem, 1987, 24: 645–650

    Article  CAS  Google Scholar 

  27. Govindachari TR, Thyagarajan BS. Proc Ind Acad Sci, 1954, 39: 232–239

    Article  Google Scholar 

  28. Tominaga Y, Yokota K, Hagimori M, Shigemitsu Y, Mizuyama N, Wang BC. Heterocycles, 2009, 78: 1271–1279

    Article  Google Scholar 

  29. Hagimori M, Matsui S, Mizuyama N, Yokota K, Nagaoka J, Tominaga Y. Eur J Org Chem, 2009, 2009(33): 5847–5853

    Article  CAS  Google Scholar 

  30. Diels O, Alder K. Justus Liebigs Ann Chem, 1932, 498: 16–49

    Article  Google Scholar 

  31. Liu Y, Qin A, Tang BZ. Prog Polym Sci, 2018, 78: 92–138

    Article  CAS  Google Scholar 

  32. Das A, Theato P. Chem Rev, 2016, 116: 1434–1495

    Article  CAS  PubMed  Google Scholar 

  33. Truong VX, Ablett MP, Richardson SM, Hoyland JA, Dove AP. J Am Chem Soc, 2015, 137: 1618–1622

    Article  CAS  PubMed  Google Scholar 

  34. Bell CA, Yu J, Barker IA, Truong VX, Cao Z, Dobrinyin AV, Becker ML, Dove AP. Angew Chem Int Ed, 2016, 55: 13076–13080

    Article  CAS  Google Scholar 

  35. Worch JC, Weems AC, Yu J, Arno MC, Wilks TR, Huckstepp RTR, O’Reilly RK, Becker ML, Dove AP. Nat Commun, 2020, 11: 3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daglar O, Gunay US, Hizal G, Tunca U, Durmaz H. Macromolecules, 2019, 52: 3558–3572

    Article  CAS  Google Scholar 

  37. Daglar O, Cakmakci E, Gunay US, Hizal G, Tunca U, Durmaz H. Macromolecules, 2020, 53: 2965–2975

    Article  CAS  Google Scholar 

  38. Daglar O, Çakmakçi E, Hizal G, Tunca U, Durmaz H. Eur Polym J, 2020, 130: 109681

    Article  CAS  Google Scholar 

  39. He B, Huang J, Liu X, Zhang J, Lam JWY, Tang BZ. Prog Polym Sci, 2022, 126: 101503

    Article  CAS  Google Scholar 

  40. He B, Su H, Bai T, Wu Y, Li S, Gao M, Hu R, Zhao Z, Qin A, Ling J, Tang BZ. J Am Chem Soc, 2017, 139: 5437–5443

    Article  CAS  PubMed  Google Scholar 

  41. He B, Zhen S, Wu Y, Hu R, Zhao Z, Qin A, Tang BZ. Polym Chem, 2016, 7: 7375–7382

    Article  CAS  Google Scholar 

  42. He B, Zhang J, Wang J, Wu Y, Qin A, Tang BZ. Macromolecules, 2020, 53: 5248–5254

    Article  CAS  Google Scholar 

  43. Wei B, Li W, Zhao Z, Qin A, Hu R, Tang BZ. J Am Chem Soc, 2017, 139: 5075–5084

    Article  CAS  PubMed  Google Scholar 

  44. Wu X, Li W, Hu R, Tang BZ. Macromol Rapid Commun, 2021, 42: 2000633

    Article  CAS  Google Scholar 

  45. Gao H, Zhang N, Li Y, Zhao W, Quan Y, Cheng Y, Chen HY, Xu JJ. Sci China Chem, 2020, 63: 715–721

    Article  CAS  Google Scholar 

  46. Zhang Z, Ma W, Xu B, Zhou X, Wang C, Xie Z, Liu L, Ma Y. Sci China Chem, 2018, 61: 192–199

    Article  CAS  Google Scholar 

  47. He B, Huang J, Zhang J, Sung HHY, Lam JWY, Zhang Z, Yan S, Wang D, Zhang J, Tang BZ. Angew Chem Int Ed, 2022, 61: e202117709

    CAS  Google Scholar 

  48. Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY, Tang BZ. Adv Mater, 2021, 33: 2008071

    Article  CAS  Google Scholar 

  49. Wada K, Hashimoto K, Ochi J, Tanaka K, Chujo Y. Aggregate, 2021, 2: e93

    Google Scholar 

  50. Qi J, Ou H, Liu Q, Ding D. Aggregate, 2021, 2: 95–113

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22101028, 21788102), the start-up funding from Beijing Normal University (310432102, 310432103), the Innovation and Technology Commission (ITC-CNERC14SC01), the Science and Technology Plan of Shenzhen (JCYJ20160229205601482, JCYJ20180507183832744, JCYJ20170818113602462), the Natural Science Foundation of Guangdong Province (2019B121205002), and the Research Grants Council of Hong Kong (16305618, 16304819, 16305320, N-HKUST609/19, C6009-17G, C6014-20W/16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiachang Huang, Jacky W. Y. Lam or Ben Zhong Tang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information (SI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Huang, J., Zhang, J. et al. In-situ generation of poly(quinolizine)s via catalyst-free polyannulations of activated diyne and pyridines. Sci. China Chem. 65, 789–795 (2022). https://doi.org/10.1007/s11426-021-1225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1225-4

Keywords

Navigation