Skip to main content
Log in

Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The accumulation of discarded petroleum-based plastics causes serious environmental crises. Currently, recyclable polymers with neutrality in thermodynamics, such as polyesters, polycarbonates, and polyolefins, have been developed as promising alternatives to traditional petroleum-based polymers. However, the chemical recycle of these polymers usually requires high energy input and expensive catalysts. Dynamic covalent bonds, such as thioester and disulfide bonds, have emerged as building blocks for constructing recyclable polymers that can be rapidly degraded/recycled under mild conditions. In this review, we introduce representative studies on recyclable polythioesters and polydisulfides with respect to their synthetic strategies, thermodynamic manipulation, physicochemical properties, and preliminary applications. We also highlight the important role of kinetic factors played in the design of recyclable polymers. Finally, major challenges, perspectives, and future opportunities in the synthesis and applications of polythioesters/polydisulfides are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plastics Europe. Plastics—the Facts 2020: an analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts2020

  2. Science to enable sustainable plastics. A white paper from the 8th Chemical Sciences and Society Summit (CS3). London, 2020

  3. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Science, 2015, 347: 768–771

    Article  CAS  PubMed  Google Scholar 

  4. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, Takada H, Teh S, Thompson RC. Nature, 2013, 494: 169–171

    Article  CAS  PubMed  Google Scholar 

  5. Vethaak AD, Legler J. Science, 2021, 371: 672–674

    Article  CAS  PubMed  Google Scholar 

  6. Revell LE, Kuma P, Le Ru EC, Somerville WRC, Gaw S. Nature, 2021, 598: 462–467

    Article  CAS  PubMed  Google Scholar 

  7. Liu XH, Xu SM, Zhang F, Wang XL, Wang YZ. Acta Polym Sin, 2022, 53: 1005–1022

    Google Scholar 

  8. Jehanno C, Demarteau J, Mantione D, Arno MC, Ruipérez F, Hedrick JL, Dove AP, Sardon H. ACS Macro Lett, 2020, 9: 443–447

    Article  CAS  PubMed  Google Scholar 

  9. Korley LSTJ, Epps III TH, Helms BA, Ryan AJ. Science, 2021, 373: 66–69

    Article  CAS  PubMed  Google Scholar 

  10. Jia X, Qin C, Friedberger T, Guan Z, Huang Z. Sci Adv, 2016, 2: 1501591–e1501591

    Article  Google Scholar 

  11. Lewis SE, Wilhelmy BE, Leibfarth FA. Chem Sci, 2019, 10: 6270–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jehanno C, Flores I, Dove AP, Müller AJ, Ruipérez F, Sardon H. Green Chem, 2018, 20: 1205–1212

    Article  CAS  Google Scholar 

  13. Delle Chiaie KR, McMahon FR, Williams EJ, Price MJ, Dove AP. Polym Chem, 2020, 11: 1450–1453

    Article  CAS  Google Scholar 

  14. Jehanno C, Demarteau J, Mantione D, Arno MC, Ruipérez F, Hedrick JL, Dove AP, Sardon H. Angew Chem Int Ed, 2021, 60: 6710–6717

    Article  CAS  Google Scholar 

  15. Martinez MR, Matyjaszewski K. CCS Chem, 2022, 4: 2176–2211

    Article  CAS  Google Scholar 

  16. Song B, Bai T, Liu D, Hu R, Lu D, Qin A, Ling J, Tang BZ. CCS Chem, 2021, 4: 237–249

    Article  Google Scholar 

  17. Zheng J, Suh S. Nat Clim Chang, 2019, 9: 374–378

    Article  Google Scholar 

  18. Cywar RM, Rorrer NA, Hoyt CB, Beckham GT, Chen EYX. Nat Rev Mater, 2021, 7: 83–103

    Article  Google Scholar 

  19. Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411–2502

    Article  CAS  PubMed  Google Scholar 

  20. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E. Chem Rev, 2016, 116: 1637–1669

    Article  CAS  PubMed  Google Scholar 

  21. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Angew Chem Int Ed, 2019, 58: 50–62

    Article  CAS  Google Scholar 

  22. Mohanty AK, Vivekanandhan S, Pin JM, Misra M. Science, 2018, 362: 536–542

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Romain C, Williams CK. Nature, 2016, 540: 354–362

    Article  CAS  PubMed  Google Scholar 

  24. Hong M, Chen EYX. Green Chem, 2017, 19: 3692–3706

    Article  CAS  Google Scholar 

  25. Häußler M, Eck M, Rothauer D, Mecking S. Nature, 2021, 590: 423–427

    Article  PubMed  Google Scholar 

  26. Coates GW, Getzler YDYL. Nat Rev Mater, 2020, 5: 501–516

    Article  CAS  Google Scholar 

  27. Shi C, Reilly LT, Phani Kumar VS, Coile MW, Nicholson SR, Broadbelt LJ, Beckham GT, Chen EYX. Chem, 2021, 7: 2896–2912

    Article  CAS  Google Scholar 

  28. Höcker H, Keul H. Adv Mater, 1994, 6: 21–36

    Article  Google Scholar 

  29. Olsén P, Undin J, Odelius K, Keul H, Albertsson AC. Biomacromolecules, 2016, 17: 3995–4002

    Article  PubMed  PubMed Central  Google Scholar 

  30. Matsuo J, Aoki K, Sanda F, Endo T. Macromolecules, 1998, 31: 4432–4438

    Article  CAS  Google Scholar 

  31. Keul H, Bächer R, Höcker H. Makromol Chem, 1986, 187: 2579–2589

    Article  CAS  Google Scholar 

  32. Pruckmayr G, Wu TK. Macromolecules, 1978, 11: 265–270

    Article  CAS  Google Scholar 

  33. Chikaoka S, Takata T, Endo T. Macromolecules, 1991, 24: 6557–6562

    Article  CAS  Google Scholar 

  34. Wegner G, Rodriguez-Baeza M, Lücke A, Lieser G. Makromol Chem, 1980, 181: 1763–1790

    Article  CAS  Google Scholar 

  35. Hong M, Chen EYX. Nat Chem, 2016, 8: 42–49

    Article  CAS  PubMed  Google Scholar 

  36. Zhu JB, Watson EM, Tang J, Chen EYX. Science, 2018, 360: 398–403

    Article  CAS  PubMed  Google Scholar 

  37. Shi C, Li ZC, Caporaso L, Cavallo L, Falivene L, Chen EYX. Chem, 2021, 7: 670–685

    Article  CAS  Google Scholar 

  38. Tang X, Hong M, Falivene L, Caporaso L, Cavallo L, Chen EYX. J Am Chem Soc, 2016, 138: 14326–14337

    Article  CAS  PubMed  Google Scholar 

  39. Zhu JB, Chen EYX. Angew Chem Int Ed, 2018, 57: 12558–12562

    Article  CAS  Google Scholar 

  40. Yuan PJ, Hong M. Acta Polym Sin, 2019, 50: 327–337

    CAS  Google Scholar 

  41. Shen Y, Xiong W, Li Y, Zhao Z, Lu H, Li Z. CCS Chem, 2020, 3: 620–630

    Article  Google Scholar 

  42. Fahnhorst GW, Hoye TR. ACS Macro Lett, 2018, 7: 143–147

    Article  CAS  PubMed  Google Scholar 

  43. Yan YT, Wu G, Chen SC, Wang YZ. Sci China Chem, 2022, 65: 943–953

    Article  CAS  Google Scholar 

  44. Li LG, Wang QY, Zheng QY, Du FS, Li ZC. Macromolecules, 2021, 54: 6745–6752

    Article  CAS  Google Scholar 

  45. Shi CX, Guo YT, Wu YH, Li ZY, Wang YZ, Du FS, Li ZC. Macromolecules, 2019, 52: 4260–4269

    Article  CAS  Google Scholar 

  46. MacDonald JP, Shaver MP. Polym Chem, 2016, 7: 553–559

    Article  CAS  Google Scholar 

  47. Tempelaar S, Mespouille L, Coulembier O, Dubois P, Dove AP. Chem Soc Rev, 2013, 42: 1312–1336

    Article  CAS  PubMed  Google Scholar 

  48. Sulley GS, Gregory GL, Chen TTD, Peña Carrodeguas L, Trott G, Santmarti A, Lee KY, Terrill NJ, Williams CK. J Am Chem Soc, 2020, 142: 4367–4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diallo AK, Kirillov E, Slawinski M, Brusson JM, Guillaume SM, Carpentier JF. Polym Chem, 2015, 6: 1961–1971

    Article  CAS  Google Scholar 

  50. Ellis WC, Jung Y, Mulzer M, Di Girolamo R, Lobkovsky EB, Coates GW. Chem Sci, 2014, 5: 4004–4011

    Article  CAS  Google Scholar 

  51. Keul H, Müller AJ, Höcker H. Makromolekulare Chem Macromol Symposia, 1993, 67: 289–298

    Article  CAS  Google Scholar 

  52. Cao H, Zhang R, Zhou Z, Liu S, Tao Y, Wang F, Wang X. ACS Catal, 2022, 12: 481–490

    Article  CAS  Google Scholar 

  53. Deacy AC, Moreby E, Phanopoulos A, Williams CK. J Am Chem Soc, 2020, 142: 19150–19160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Singer FN, Deacy AC, McGuire TM, Williams CK, Buchard A. Angew Chem Int Ed, 2022, 61: e202201785

    CAS  Google Scholar 

  55. Li C, Sablong RJ, van Benthem RATM, Koning CE. ACS Macro Lett, 2017, 6: 684–688

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Zhou H, Guo JZ, Ren WM, Lu XB. Angew Chem Int Ed, 2017, 56: 4862–4866

    Article  CAS  Google Scholar 

  57. Liao X, Cui FC, He JH, Ren WM, Lu XB, Zhang YT. Chem Sci, 2022, 13: 6283–6290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu Y, Gao B, Liu Y, Lu XB. Angew Chem Int Ed, 2022, 61: e202204492

    CAS  Google Scholar 

  59. Darensbourg DJ, Wei SH, Yeung AD, Ellis WC. Macromolecules, 2013, 46: 5850–5855

    Article  CAS  Google Scholar 

  60. Darensbourg DJ. Polym Degrad Stab, 2018, 149: 45–51

    Article  CAS  Google Scholar 

  61. Lu YX, Guan Z. J Am Chem Soc, 2012, 134: 14226–14231

    Article  CAS  PubMed  Google Scholar 

  62. Lu YX, Tournilhac F, Leibler L, Guan Z. J Am Chem Soc, 2012, 134: 8424–8427

    Article  CAS  PubMed  Google Scholar 

  63. Liu H, Nelson AZ, Ren Y, Yang K, Ewoldt RH, Moore JS. ACS Macro Lett, 2018, 7: 933–937

    Article  CAS  PubMed  Google Scholar 

  64. Yan T, Guironnet D. Sci China Chem, 2020, 63: 755–757

    CAS  Google Scholar 

  65. Ofstead EA, Calderon N. Makromol Chem, 1972, 154: 21–34

    Article  CAS  Google Scholar 

  66. Tuba R, Grubbs RH. Polym Chem, 2013, 4: 3959–3962

    Article  CAS  Google Scholar 

  67. Neary WJ, Isais TA, Kennemur JG. J Am Chem Soc, 2019, 141: 14220–14229

    Article  CAS  PubMed  Google Scholar 

  68. Neary WJ, Kennemur JG. ACS Macro Lett, 2019, 8: 46–56

    Article  CAS  PubMed  Google Scholar 

  69. Tuba R, Balogh J, Hlil A, Barłóg M, Al-Hashimi M, Bazzi HS. ACS Sustain Chem Eng, 2016, 4: 6090–6094

    Article  CAS  Google Scholar 

  70. Feist JD, Xia Y. J Am Chem Soc, 2020, 142: 1186–1189

    Article  CAS  PubMed  Google Scholar 

  71. Sathe D, Zhou J, Chen H, Su HW, Xie W, Hsu TG, Schrage BR, Smith T, Ziegler CJ, Wang J. Nat Chem, 2021, 13: 743–750

    Article  CAS  PubMed  Google Scholar 

  72. Chen H, Shi Z, Hsu TG, Wang J. Angew Chem Int Ed, 2021, 60: 25493–25498

    Article  CAS  Google Scholar 

  73. Jehanno C, Pérez-Madrigal MM, Demarteau J, Sardon H, Dove AP. Polym Chem, 2019, 10: 172–186

    Article  CAS  Google Scholar 

  74. Zhang X, Fevre M, Jones GO, Waymouth RM. Chem Rev, 2018, 118: 839–885

    Article  CAS  PubMed  Google Scholar 

  75. Lu XB, Liu Y, Zhou H. Chem Eur J, 2018, 24: 11255–11266

    Article  CAS  PubMed  Google Scholar 

  76. Fontaine L. Angew Chem Int Ed, 2009, 48: 9780

    Article  Google Scholar 

  77. Wang C, Mavila S, Worrell BT, Xi W, Goldman TM, Bowman CN. ACS Macro Lett, 2018, 7: 1312–1316

    Article  CAS  PubMed  Google Scholar 

  78. Konieczynska MD, Grinstaff MW. Acc Chem Res, 2017, 50: 151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perera MM, Ayres N. Polym Chem, 2020, 11: 1410–1423

    Article  CAS  Google Scholar 

  80. Black SP, Sanders JKM, Stefankiewicz AR. Chem Soc Rev, 2014, 43: 1861–1872

    Article  CAS  PubMed  Google Scholar 

  81. Zou W, Dong J, Luo Y, Zhao Q, Xie T. Adv Mater, 2017, 29: 1606100

    Article  Google Scholar 

  82. Krishnakumar B, Sanka RVSP, Binder WH, Parthasarthy V, Rana S, Karak N. Chem Eng J, 2020, 385: 123820

    Article  CAS  Google Scholar 

  83. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F. Science, 2002, 295: 1698–1702

    Article  CAS  PubMed  Google Scholar 

  84. Bowman CN, Kloxin CJ. Angew Chem Int Ed, 2012, 51: 4272–4274

    Article  CAS  Google Scholar 

  85. Worrell BT, McBride MK, Lyon GB, Cox LM, Wang C, Mavila S, Lim CH, Coley HM, Musgrave CB, Ding Y, Bowman CN. Nat Commun, 2018, 9: 2804

    Article  PubMed  PubMed Central  Google Scholar 

  86. Podgórski M, Mavila S, Huang S, Spurgin N, Sinha J, Bowman CN. Angew Chem Int Ed, 2020, 59: 9345–9349

    Article  Google Scholar 

  87. Jin Y, Lei Z, Taynton P, Huang S, Zhang W. Matter, 2019, 1: 1456–1493

    Article  Google Scholar 

  88. Kloxin CJ, Bowman CN. Chem Soc Rev, 2013, 42: 7161–7173

    Article  CAS  PubMed  Google Scholar 

  89. Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, Li Z, Lu H. J Am Chem Soc, 2019, 141: 4928–4935

    Article  CAS  PubMed  Google Scholar 

  90. Yue TJ, Zhang MC, Gu GG, Wang LY, Ren WM, Lu XB. Angew Chem Int Ed, 2019, 58: 618–623

    Article  CAS  Google Scholar 

  91. Yue TJ, Ren BH, Zhang WJ, Lu XB, Ren WM, Darensbourg DJ. Angew Chem Int Ed, 2021, 60: 4315–4321

    Article  CAS  Google Scholar 

  92. Yue TJ, Bhat GA, Zhang WJ, Ren WM, Lu XB, Darensbourg DJ. Angew Chem Int Ed, 2020, 59: 13633–13637

    Article  CAS  Google Scholar 

  93. Yue TJ, Ren WM, Chen L, Gu GG, Liu Y, Lu XB. Angew Chem Int Ed, 2018, 57: 12670–12674

    Article  CAS  Google Scholar 

  94. Zhang CJ, Zhang XH. Chin J Polym Sci, 2019, 37: 951–958

    Article  CAS  Google Scholar 

  95. Aksakal S, Aksakal R, Becer CR. Polym Chem, 2018, 9: 4507–4516

    Article  CAS  Google Scholar 

  96. Song PD, Xia L, Nie X, Chen G, Wang F, Zhang Z, Hong CY, You YZ. Macromol Rapid Commun, 2022, 43: 2200140

    Article  CAS  Google Scholar 

  97. Bingham NM, Abousalman-Rezvani Z, Collins K, Roth PJ. Polym Chem, 2022, 13: 2880–2901

    Article  CAS  Google Scholar 

  98. Li H, Ollivier J, Guillaume SM, Carpentier JF. Angew Chem Int Ed, 2022, 61: e202202386

    CAS  Google Scholar 

  99. Lei JX, Wang QY, Du FS, Li ZC. Chin J Polym Sci, 2021, 39: 1146–1154

    Article  CAS  Google Scholar 

  100. Shi C, McGraw ML, Li ZC, Cavallo L, Falivene L, Chen EYX. Sci Adv, 2020, 6: eabc0495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang CJ, Zhang X, Zhang XH. Sci China Chem, 2020, 63: 1807–1814

    Article  CAS  Google Scholar 

  102. Cui C, An L, Zhang Z, Ji M, Chen K, Yang Y, Su Q, Wang F, Cheng Y, Zhang Y. Adv Funct Mater, 2022, 32: 2203720

    Article  CAS  Google Scholar 

  103. Zheng N, Xu Y, Zhao Q, Xie T. Chem Rev, 2021, 121: 1716–1745

    Article  CAS  PubMed  Google Scholar 

  104. Chen XX, Zhong QY, Wang SJ, Wu YS, Tan JD, Lei HX, Huang SY, Zhang YF. Acta Polym Sin, 2019, 50: 469–484

    CAS  Google Scholar 

  105. Abe D, Sasanuma Y. Polym Chem, 2012, 3: 1576–1587

    Article  CAS  Google Scholar 

  106. Marvel CS, Kotch A. J Am Chem Soc, 1951, 73: 1100–1102

    Article  CAS  Google Scholar 

  107. Kricheldorf HR, Schwarz G. J Macromol Sci Part A, 2007, 44: 625–649

    Article  CAS  Google Scholar 

  108. Schöberl VA. Makromol Chem, 1960, 37: 64–70

    Article  Google Scholar 

  109. Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A. Biomacromolecules, 2001, 2: 1061–1065

    Article  PubMed  Google Scholar 

  110. Kamei Y, Nagai A, Nishida H, Kimura H, Endo T. Macromol Biosci, 2007, 7: 364–372

    Article  CAS  PubMed  Google Scholar 

  111. Takagi Y, Hashii M, Maehara A, Yamane T. Macromolecules, 1999, 32: 8315–8318

    Article  CAS  Google Scholar 

  112. Wang Y, Li M, Wang S, Tao Y, Wang X. Angew Chem Int Ed, 2021, 60: 10798–10805

    Article  CAS  Google Scholar 

  113. Bannin TJ, Kiesewetter MK. Macromolecules, 2015, 48: 5481–5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smith RA, Fu G, McAteer O, Xu M, Gutekunst WR. J Am Chem Soc, 2019, 141: 1446–1451

    Article  CAS  PubMed  Google Scholar 

  115. Wang LY, Gu GG, Ren BH, Yue TJ, Lu XB, Ren WM. ACS Catal, 2020, 10: 6635–6644

    Article  CAS  Google Scholar 

  116. Suzuki M, Makimura K, Matsuoka S. Biomacromolecules, 2016, 17: 1135–1141

    Article  CAS  PubMed  Google Scholar 

  117. Mavila S, Worrell BT, Culver HR, Goldman TM, Wang C, Lim CH, Domaille DW, Pattanayak S, McBride MK, Musgrave CB, Bowman CN. J Am Chem Soc, 2018, 140: 13594–13598

    Article  CAS  PubMed  Google Scholar 

  118. Overberger CG, Weise J. J Polym Sci B Polym Lett, 1964, 2: 329–331

    Article  CAS  Google Scholar 

  119. Yuan J, Shi D, Zhang Y, Lu J, Wang L, Chen EQ, Lu H. CCS Chem, 2020, 2: 236–244

    Article  CAS  Google Scholar 

  120. Xiong W, Chang W, Shi D, Yang L, Tian Z, Wang H, Zhang Z, Zhou X, Chen EQ, Lu H. Chem, 2020, 6: 1831–1843

    Article  CAS  Google Scholar 

  121. Auras R, Harte B, Selke S. Macromol Biosci, 2004, 4: 835–864

    Article  CAS  PubMed  Google Scholar 

  122. Wang Y, Li M, Chen J, Tao Y, Wang X. Angew Chem Int Ed, 2021, 60: 22547–22553

    Article  CAS  Google Scholar 

  123. Suzuki M, Watanabe A, Kawai R, Sato R, Matsuoka S, Kawauchi S. Polymer, 2021, 215: 123386

    Article  CAS  Google Scholar 

  124. Liu Y, Wu J, Hu X, Zhu N, Guo K. ACS Macro Lett, 2021, 10: 284–296

    Article  PubMed  Google Scholar 

  125. Yuan P, Sun Y, Xu X, Luo Y, Hong M. Nat Chem, 2021, 14: 294–303

    Article  PubMed  Google Scholar 

  126. Kikuchi H, Tsubokawa N, Endo T. Chem Lett, 2005, 34: 376–377

    Article  CAS  Google Scholar 

  127. Bang EK, Lista M, Sforazzini G, Sakai N, Matile S. Chem Sci, 2012, 3: 1752–1763

    Article  CAS  Google Scholar 

  128. Endo K, Shiroi T, Murata N, Kojima G, Yamanaka T. Macromolecules, 2004, 37: 3143–3150

    Article  CAS  Google Scholar 

  129. Davis FO, Fettes EM. J Am Chem Soc, 1948, 70: 2611–2612

    Article  CAS  Google Scholar 

  130. Burns JA, Whitesides GM. J Am Chem Soc, 1990, 112: 6296–6303

    Article  CAS  Google Scholar 

  131. Dixon DA, Zeroka DJ, Wendoloski JJ, Wasserman ZR. J Phys Chem, 1985, 89: 5334–5336

    Article  CAS  Google Scholar 

  132. Meyer B. Chem Rev, 1976, 76: 367–388

    Article  CAS  Google Scholar 

  133. Bang EK, Gasparini G, Molinard G, Roux A, Sakai N, Matile S. J Am Chem Soc, 2013, 135: 2088–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gasparini G, Bang EK, Molinard G, Tulumello DV, Ward S, Kelley SO, Roux A, Sakai N, Matile S. J Am Chem Soc, 2014, 136: 6069–6074

    Article  CAS  PubMed  Google Scholar 

  135. Morelli P, Martin-Benlloch X, Tessier R, Waser J, Sakai N, Matile S. Polym Chem, 2016, 7: 3465–3470

    Article  CAS  Google Scholar 

  136. Chuard N, Gasparini G, Roux A, Sakai N, Matile S. Org Biomol Chem, 2015, 13: 64–67

    Article  CAS  PubMed  Google Scholar 

  137. Gasparini G, Bang EK, Montenegro J, Matile S. Chem Commun, 2015, 51: 10389–10402

    Article  CAS  Google Scholar 

  138. Lu J, Wang H, Tian Z, Hou Y, Lu H. J Am Chem Soc, 2020, 142: 1217–1221

    Article  CAS  PubMed  Google Scholar 

  139. Zhang Q, Qu DH, Feringa BL, Tian H. J Am Chem Soc, 2022, 144: 2022–2033

    Article  CAS  PubMed  Google Scholar 

  140. Zhang X, Waymouth RM. J Am Chem Soc, 2017, 139: 3822–3833

    Article  CAS  PubMed  Google Scholar 

  141. Behrendt FN, Schlaad H. Macromol Rapid Commun, 2018, 39: 1700735

    Article  Google Scholar 

  142. Behrendt FN, Hess A, Lehmann M, Schmidt B, Schlaad H. Polym Chem, 2019, 10: 1636–1641

    Article  CAS  Google Scholar 

  143. Liu Y, Jia Y, Wu Q, Moore JS. J Am Chem Soc, 2019, 141: 17075–17080

    Article  CAS  PubMed  Google Scholar 

  144. Pal S, Sommerfeldt A, Davidsen MB, Hinge M, Pedersen SU, Daasbjerg K. Macromolecules, 2020, 53: 4685–4691

    Article  CAS  Google Scholar 

  145. Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. Angew Chem Int Ed, 2021, 60: 21543–21549

    Article  CAS  Google Scholar 

  146. Zhang Q, Deng Y, Shi CY, Feringa BL, Tian H, Qu DH. Matter, 2021, 4: 1352–1364

    Article  CAS  Google Scholar 

  147. Zhang Q, Deng YX, Luo HX, Shi CY, Geise GM, Feringa BL, Tian H, Qu DH. J Am Chem Soc, 2019, 141: 12804–12814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Choi C, Self JL, Okayama Y, Levi AE, Gerst M, Speros JC, Hawker CJ, de Alaniz JR, Bates CM. J Am Chem Soc, 2021, 143: 9866–9871

    Article  CAS  PubMed  Google Scholar 

  149. Millican JM, Agarwal S. Macromolecules, 2021, 54: 4455–4469

    Article  CAS  Google Scholar 

  150. Huang S, Shen Y, Bisoyi HK, Tao Y, Liu Z, Wang M, Yang H, Li Q. J Am Chem Soc, 2021, 143: 12543–12551

    Article  CAS  PubMed  Google Scholar 

  151. Hansen-Felby M, Sommerfeldt A, Henriksen ML, Pedersen SU, Daasbjerg K. Polym Chem, 2021, 13: 85–90

    Article  Google Scholar 

  152. Shelef O, Gnaim S, Shabat D. J Am Chem Soc, 2021, 143: 21177–21188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fu J, Yu C, Li L, Yao SQ. J Am Chem Soc, 2015, 137: 12153–12160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22125101). W. Xiong thanks the fellowship of the China Postdoctoral Science Foundation Funded Project (2020M680193) and the China Postdoctoral Science Special Foundation Funded Project (2021T140008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Lu, H. Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci. China Chem. 66, 725–738 (2023). https://doi.org/10.1007/s11426-022-1418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1418-9

Keywords

Navigation