Skip to main content
Log in

Electrochemical conversion of furfural to furoic acid: a more stable, efficient and energy-saving system

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The paired electrolytic system is constructed by combining the valuable organic electro-oxidation and electro-reduction reactions, which can replace the ineffective water splitting half-reaction. By reducing the energy consumption of the electrolytic cell, the value-added electrolysis is realized. The indirect electrolysis method greatly reduces the dependence of the organic electrolysis reaction on electrode potential by introducing the redox mediators, which solves the problem on the matching of anode and cathode current under potentiostatic conditions. Here, we report a more stable, efficient and energy-saving linear paired electrochemical synthesis system that can simultaneously convert furfural to furoic acid at both the anode and cathode at higher current densities. Stable three-dimensional networked PbO2 is used as the anode and the catalytic amount of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is used as the mediator to realize the efficient conversion of furfural to furoic acid in a wide potential range. The cathode catalyzes two-electron oxygen reduction to hydrogen peroxide using Pb/RHPC gas-diffusion electrode, which mediates the oxidation of furfural to furoic acid simultaneously. In potentiostatic electrolysis, the selectivity of the furoic acid in the cathode and anode is 33.2% and 99.3%, respectively, and the total electron efficiency is 127.1%. The properties of the cathode and anode remain stable after the long-time electrolysis in a flow cell. By choosing a stable anode with high oxygen evolution overpotential and a gas-diffusion cathode with high hydrogen evolution overpotential, the electrolytic cell can be operated efficiently and stably by introducing reasonable mediated reactions. The two half-reactions have good compatibility during the electrolysis process, saving energy consumption by about 12.3%, for certain industrial application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    CAS  Google Scholar 

  2. Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew Chem Int Ed, 2018, 57: 6018–6041

    Google Scholar 

  3. Leech MC, Garcia AD, Petti A, Dobbs AP, Lam K. React Chem Eng, 2020, 5: 977–990

    CAS  Google Scholar 

  4. Holade Y, Tuleushova N, Tingry S, Servat K, Napporn TW, Guesmi H, Cornu D, Kokoh KB. Catal Sci Technol, 2020, 10: 3071–3112

    CAS  Google Scholar 

  5. Du L, Shao Y, Sun J, Yin G, Du C, Wang Y. Catal Sci Technol, 2018, 8: 3216–3232

    CAS  Google Scholar 

  6. Li K, Sun Y. Chem Eur J, 2018, 24: 18258–18270

    CAS  Google Scholar 

  7. Simoska O, Rhodes Z, Weliwatte S, Cabrera-Pardo JR, Gaffney EM, Lim K, Minteer SD. ChemSusChem, 2021, 14: 1674–1686

    CAS  Google Scholar 

  8. Li X, Jia P, Wang T. ACS Catal, 2016, 6: 7621–7640

    CAS  Google Scholar 

  9. Kwon Y, Schouten KJP, van der Waal JC, de Jong E, Koper MTM. ACS Catal, 2016, 6: 6704–6717

    CAS  Google Scholar 

  10. Jung S, Biddinger EJ. ACS Sustain Chem Eng, 2016, 4: 6500–6508

    CAS  Google Scholar 

  11. Verdeguer P, Merat N, Gaset A. Appl Catal A-Gen, 1994, 112: 1–11

    CAS  Google Scholar 

  12. Verdeguer P, Merat N, Rigal L, Gaset A. J Chem Tech & Biotech, 1994, 61: 97–102

    CAS  Google Scholar 

  13. Yang D, Ma C, Peng B, Xu J, He YC. Industrial Crops Products, 2020, 153: 112580

    CAS  Google Scholar 

  14. Zhang S, Li L, Li J, Shi J, Xu K, Gao W, Zong L, Li G, Findlater M. Angew Chem Int Ed, 2021, 60: 7275–7282

    CAS  Google Scholar 

  15. Zhang P, Sheng X, Chen X, Fang Z, Jiang J, Wang M, Li F, Fan L, Ren Y, Zhang B, Timmer BJJ, Ahlquist MSG, Sun L. Angew Chem Int Ed, 2019, 58: 9155–9159

    CAS  Google Scholar 

  16. Sherbo RS, Delima RS, Chiykowski VA, MacLeod BP, Berlinguette CP. Nat Catal, 2018, 1: 501–507

    CAS  Google Scholar 

  17. Martínez NP, Isaacs M, Nanda KK. New J Chem, 2020, 44: 5617–5637

    Google Scholar 

  18. Chadderdon XH, Chadderdon DJ, Pfennig T, Shanks BH, Li W. Green Chem, 2019, 21: 6210–6219

    CAS  Google Scholar 

  19. Cao Y, Knijff J, Delparish A, d’Angelo MFN, Noël T. ChemSusChem, 2021, 14: 590–594

    CAS  Google Scholar 

  20. Zhang X, Han M, Liu G, Wang G, Zhang Y, Zhang H, Zhao H. Appl Catal B-Environ, 2019, 244: 899–908

    CAS  Google Scholar 

  21. Parpot P, Bettencourt AP, Chamoulaud G, Kokoh KB, Belgsir EM. Electrochim Acta, 2004, 49: 397–403

    CAS  Google Scholar 

  22. Chamoulaud G, Floner D, Moinet C, Lamy C, Belgsir EM. Electrochim Acta, 2001, 46: 2757–2760

    CAS  Google Scholar 

  23. Llorente MJ, Nguyen BH, Kubiak CP, Moeller KD. J Am Chem Soc, 2016, 138: 15110–15113

    CAS  Google Scholar 

  24. Ibanez JG, Frontana-Uribe BA, Vasquez-Medrano R. J Mex Chem Soc, 2016, 60: 247–260

    CAS  Google Scholar 

  25. Li R, Xiang K, Peng Z, Zou Y, Wang S. Adv Energy Mater, 2021, 11: 2102292

    CAS  Google Scholar 

  26. Li W, Nonaka T. J Electrochem Soc, 1999, 146: 592–599

    CAS  Google Scholar 

  27. Shen Y, Atobe M, Li W, Nonaka T. Electrochim Acta, 2003, 48: 1041–1046

    CAS  Google Scholar 

  28. Strehl J, Abraham ML, Hilt G. Angew Chem Int Ed, 2021, 60: 9996–10000

    CAS  Google Scholar 

  29. Li X, Cong L, Lin H, Liu F, Fu X, Xu HC, Lin N. Green Energy Environ, 2022, DOI:https://doi.org/10.1016/j.gee.2022.05.009

  30. Zhang Q, Guo X, Cao X, Wang D, Wei J. Chin J Catal, 2015, 36: 975–981

    CAS  Google Scholar 

  31. Li X, Xu H, Yan W. Appl Surf Sci, 2016, 389: 278–286

    CAS  Google Scholar 

  32. Wu J, Zhu K, Xu H, Yan W. Chin J Catal, 2019, 40: 917–927

    CAS  Google Scholar 

  33. Kubota SR, Choi KS. ACS Sustain Chem Eng, 2018, 6: 9596–9600

    CAS  Google Scholar 

  34. Xia H, Li HL. J Electroanal Chem, 1997, 430: 183–187

    CAS  Google Scholar 

  35. Tong J, Dang XJ, Li HL. Electroanalysis, 1997, 9: 165–168

    CAS  Google Scholar 

  36. Saila P, Hunsom M. Korean J Chem Eng, 2015, 32: 2412–2417

    CAS  Google Scholar 

  37. Rafiee M, Miles KC, Stahl SS. J Am Chem Soc, 2015, 137: 14751–14757

    CAS  Google Scholar 

  38. Mohebbati N, Prudlik A, Scherkus A, Gudkova A, Francke R. ChemElectroChem, 2021, 8: 3837–3843

    CAS  Google Scholar 

  39. Ciriminna R, Ghahremani M, Karimi B, Pagliaro M. ChemistryOpen, 2017, 6: 5–10

    CAS  Google Scholar 

  40. Chadderdon DJ, Wu LP, McGraw ZA, Panthani M, Li W. ChemElectroChem, 2019, 6: 3387–3392

    CAS  Google Scholar 

  41. Cha HG, Choi KS. Nat Chem, 2015, 7: 328–333

    CAS  Google Scholar 

  42. Semmelhack MF, Schmid CR, Cortés DA. Tetrahedron Lett, 1986, 27: 1119–1122

    CAS  Google Scholar 

  43. Schnatbaum K, Schäfer HJ. Synthesis, 1999, 1999: 864–872

    Google Scholar 

  44. Bragd PL, van Bekkum H, Besemer AC. Top Catal, 2004, 27: 49–66

    CAS  Google Scholar 

  45. Sa YJ, Kim JH, Joo SH. Angew Chem Int Ed, 2019, 58: 1100–1105

    CAS  Google Scholar 

  46. Kim HW, Ross MB, Kornienko N, Zhang L, Guo J, Yang P, McCloskey BD. Nat Catal, 2018, 1: 282–290

    Google Scholar 

  47. Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y. Nat Catal, 2018, 1: 156–162

    CAS  Google Scholar 

  48. Wang L, Zhang H, Zhang W, Guo H, Cao G, Zhao H, Yang Y. Chem Eng J, 2018, 337: 201–209

    CAS  Google Scholar 

  49. Kashani-Motlagh MM, Mahmoudabad MK. J Sol-Gel Sci Technol, 2011, 59: 106–110

    CAS  Google Scholar 

  50. Liu D, Zhang W, Lin H, Li Y, Lu H, Wang Y. J Cleaner Production, 2016, 112: 1190–1198

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2017YFB0307500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Lin or Nan Lin.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cong, L., Lin, H. et al. Electrochemical conversion of furfural to furoic acid: a more stable, efficient and energy-saving system. Sci. China Chem. 65, 2576–2587 (2022). https://doi.org/10.1007/s11426-022-1404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1404-x

Keywords

Navigation