Skip to main content
Log in

A facile approach towards high-performance poly(thioether-thioester)s with full recyclability

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing new chemically recyclable polymers is important for a circular plastics economy. Herein, we prepared a class of 1,4-dithian-2-one (DTO) with thioether and thioester functionalities. These sulfur-substituted monomers (DTO) showed excellent reactivity for ring-opening polymerization (turnover frequency (TOF) up to 2.3 × 104h−1), which afforded poly(thioether-thioester)s (P(DTO)s) with high air stability, high crystallinity, and commercial high-density polyethylene-like mechanical property (σB = 29.59 ± 1.08 MPa and εB = 749% ± 36%). Intriguingly, chemical recycling of P(DTO) to monomer could be accomplished with excellent efficiency in dilute solution (1 min) at room temperature or even from a commodity plastic waste mixture under catalyst-free thermal bulk condition (180 °C), thus establishing its circular life cycle. P(Me-DTO) could be applied for selective removal of Hg2+ with >99% removal efficiency. More importantly, Me-DTO could be recovered in high yield after utilization for Hg2+ adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Law KL, Narayan R. Nat Rev Mater, 2022, 7: 104–116

    CAS  Google Scholar 

  2. Cywar RM, Rorrer NA, Hoyt CB, Beckham GT, Chen EYX. Nat Rev Mater, 2022, 7: 83–103

    CAS  Google Scholar 

  3. Zhu Y, Romain C, Williams CK. Nature, 2016, 540: 354–362

    CAS  PubMed  Google Scholar 

  4. Hong M, Chen EYX. Green Chem, 2017, 19: 3692–3706

    CAS  Google Scholar 

  5. Coates GW, Getzler YDYL. Nat Rev Mater, 2020, 5: 501–516

    CAS  Google Scholar 

  6. Xu G, Wang Q. Green Chem, 2022, 24: 2321–2346

    CAS  Google Scholar 

  7. Lu XB, Liu Y, Zhou H. Chem Eur J, 2018, 24: 11255–11266

    CAS  PubMed  Google Scholar 

  8. Hong M, Chen EYX. Nat Chem, 2016, 8: 42–49

    CAS  PubMed  Google Scholar 

  9. Zhu JB, Watson EM, Tang J, Chen EYX. Science, 2018, 360: 398–403

    CAS  PubMed  Google Scholar 

  10. Abel BA, Snyder RL, Coates GW. Science, 2021, 373: 783–789

    CAS  PubMed  Google Scholar 

  11. Singer FN, Deacy AC, McGuire TM, Williams CK, Buchard A. Angew Chem Int Ed, 2022, 61: e202201785

  12. MacDonald JP, Shaver MP. Polym Chem, 2016, 7: 553–559

    CAS  Google Scholar 

  13. Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Angew Chem Int Ed, 2022, 61: e202201407

    CAS  Google Scholar 

  14. Nishida H, Yamashita M, Hattori N, Endo T, Tokiwa Y. Polym Degrad Stab, 2000, 70: 485–496

    Google Scholar 

  15. Shi CX, Guo YT, Wu YH, Li ZY, Wang YZ, Du FS, Li ZC. Macromolecules, 2019, 52: 4260–4269

    CAS  Google Scholar 

  16. Li LG, Wang QY, Zheng QY, Du FS, Li ZC. Macromolecules, 2021, 54: 6745–6752

    CAS  Google Scholar 

  17. Tu YM, Wang XM, Yang X, Fan HZ, Gong FL, Cai Z, Zhu JB. J Am Chem Soc, 2021, 143: 20591–20597

    CAS  PubMed  Google Scholar 

  18. Fan HZ, Yang X, Chen JH, Tu YM, Cai Z, Zhu JB. Angew Chem Int Ed, 2022, 61: e202117639

    CAS  Google Scholar 

  19. Zhang W, Dai J, Wu YC, Chen JX, Shan SY, Cai Z, Zhu JB. ACS Macro Lett, 2022, 11: 173–178

    CAS  PubMed  Google Scholar 

  20. Sathe D, Zhou J, Chen H, Su HW, Xie W, Hsu TG, Schrage BR, Smith T, Ziegler CJ, Wang J. Nat Chem, 2021, 13: 743–750

    CAS  PubMed  Google Scholar 

  21. Liu Y, Zhou H, Guo JZ, Ren WM, Lu XB. Angew Chem Int Ed, 2017, 56: 4862–4866

    CAS  Google Scholar 

  22. Olsén P, Odelius K, Albertsson AC. Macromolecules, 2014, 47: 6189–6195

    Google Scholar 

  23. Zhang Q, Deng Y, Shi CY, Feringa BL, Tian H, Qu DH. Matter, 2021, 4: 1352–1364

    CAS  Google Scholar 

  24. Li J, Liu F, Liu Y, Shen Y, Li Z. Angew Chem Int Ed, 2022, 61: e202207105

    CAS  Google Scholar 

  25. Yan YT, Wu G, Chen SC, Wang YZ. Sci China Chem, 2022, 65: 943–953

    CAS  Google Scholar 

  26. Yu Y, Gao B, Liu Y, Lu XB. Angew Chem Int Ed, 2022, 61: e202204492

    CAS  Google Scholar 

  27. Lim J, Pyun J, Char K. Angew Chem Int Ed, 2015, 54: 3249–3258

    CAS  Google Scholar 

  28. Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P. Macromol Rapid Commun, 2019, 40: 1800650

    Google Scholar 

  29. Hasell T, Parker DJ, Jones HA, McAllister T, Howdle SM. Chem Commun, 2016, 52: 5383–5386

    CAS  Google Scholar 

  30. Cao W, Dai F, Hu R, Tang BZ. J Am Chem Soc, 2020, 142: 978–986

    CAS  PubMed  Google Scholar 

  31. Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung YE, Char K, Pyun J. Nat Chem, 2013, 5: 518–524

    CAS  PubMed  Google Scholar 

  32. Zhang CJ, Zhu TC, Cao XH, Hong X, Zhang XH. J Am Chem Soc, 2019, 141: 5490–5496

    CAS  PubMed  Google Scholar 

  33. Suzuki M, Makimura K, Matsuoka S. Biomacromolecules, 2016, 17: 1135–1141

    CAS  PubMed  Google Scholar 

  34. Yue TJ, Zhang MC, Gu GG, Wang LY, Ren WM, Lu XB. Angew Chem Int Ed, 2019, 58: 618–623

    CAS  Google Scholar 

  35. Yuan P, Sun Y, Xu X, Luo Y, Hong M. Nat Chem, 2022, 14: 294–303

    CAS  PubMed  Google Scholar 

  36. Yang X, Zhang W, Huang HY, Dai J, Wang MY, Fan HZ, Cai Z, Zhang Q, Zhu JB. Macromolecules, 2022, 55: 2777–2786

    CAS  Google Scholar 

  37. Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, Li Z, Lu H. J Am Chem Soc, 2019, 141: 4928–4935

    CAS  PubMed  Google Scholar 

  38. Shi C, McGraw ML, Li ZC, Cavallo L, Falivene L, Chen EYX. Sci Adv, 2020, 6: eabc0495

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiong W, Chang W, Shi D, Yang L, Tian Z, Wang H, Zhang Z, Zhou X, Chen EQ, Lu H. Chem, 2020, 6: 1831–1843

    CAS  Google Scholar 

  40. Wang Y, Li M, Chen J, Tao Y, Wang X. Angew Chem Int Ed, 2021, 60: 22547–22553

    CAS  Google Scholar 

  41. Yang KK, Wang XL, Wang YZ. J MacroMol Sci Part C-Polym Rev, 2002, 42: 373–398

    Google Scholar 

  42. Tian GQ, Yang ZH, Zhang W, Chen SC, Chen L, Wu G, Wang YZ. Green Chem, 2022, 24: 4490–4497

    CAS  Google Scholar 

  43. Liu ZP, Ding SD, Sui YJ, Wang YZ. J Appl Polym Sci, 2009, 112: 3079–3086

    CAS  Google Scholar 

  44. Stellmach KA, Paul MKK, Xu M, Su YL, Fu L, Toland AR, Tran H, Chen L, Ramprasad R, Gutekunst WR. ACS Macro Lett, 2022, 11: 895–901

    CAS  PubMed  Google Scholar 

  45. Larsen J, Lenoir C. Synthesis, 1989, 1989: 134

    Google Scholar 

  46. Yang ZH, Tian GQ, Chen SC, Wu G. Acta Polym Sin, 2022, 53: 236–244

    CAS  Google Scholar 

  47. Li L, Chen X, Xia Q, Wei X, Liu J, Fan Z, Guo M. Carbohydr Polym, 2016, 142: 82–90

    CAS  PubMed  Google Scholar 

  48. Sperling L. Mechanical behavior of polymers. In: Sperling LH, Ed. Introduction to Physical Polymer Science. 4th Ed. Chapter 11. Hoboken: John Wiley & Sons, Inc., 2005. 557–612

    Google Scholar 

  49. Lipinski BM, Morris LS, Silberstein MN, Coates GW. J Am Chem Soc, 2020, 142: 6800–6806

    CAS  PubMed  Google Scholar 

  50. Rapagnani RM, Dunscomb RJ, Fresh AA, Tonks IA. Nat Chem, 2022, 14: 877–883

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1501700), the National Natural Science Foundation of China (51903177, U19A2095), the “1000-Youth Talents Program”, and the Fundamental Research Funds for the Central Universities (YJ201924, YJ202209). We would like to thank Dr. Dongyan Deng from the College of Chemistry, Sichuan University for NMR testing and Dr. Xi Wu from the analytic testing center, Sichuan University for AAS testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongzheng Cai or Jian-Bo Zhu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Xiong, W., Du, MR. et al. A facile approach towards high-performance poly(thioether-thioester)s with full recyclability. Sci. China Chem. 66, 251–258 (2023). https://doi.org/10.1007/s11426-022-1392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1392-8

Navigation