Skip to main content
Log in

Bis(4-methylthio)phenyl)amine-based hole transport materials for highly-efficient perovskite solar cells: insight into the carrier ultrafast dynamics and interfacial transport

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hole transport layers (HTLs) play a significant role in the performance of perovskite solar cells. A new class of linear small-molecules based on bis(4-methylthio)phenyl)amine as an end group, carbon, oxygen and sulfur as the center atoms for the center unit (denoted as MT-based small-molecule), respectively, have been applied as HTL, and two of them presented the efficiency over 20% in the planar inverted perovskite solar cells (PSCs), which demonstrated a significant improvement in comparison with the widely used HTL, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (known as PEDOT:PSS), in the planar inverted architecture. The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOTPSS samples. The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI3 can be filled much quicker than that at PEDOT/MAPbI3 interfaces. Moreover, the hole injection time from MAPbI3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOTPSS. Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances. These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  PubMed  Google Scholar 

  2. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. Science, 2015, 347: 522–525

    Article  CAS  PubMed  Google Scholar 

  3. Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395–398

    Article  CAS  PubMed  Google Scholar 

  4. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316–319

    Article  CAS  PubMed  Google Scholar 

  5. Green MA, Ho-Baillie A. ACS Energy Lett, 2017, 2: 822–830

    Article  CAS  Google Scholar 

  6. Domanski K, Correa-Baena JP, Mine N, Nazeeruddin MK, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M. ACS Nana, 2016, 10: 6306–6314

    Article  CAS  Google Scholar 

  7. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643–647

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Sakurai T, Wen W, Qi Y. Adv Mater Interfaces, 2018, 5: 1800260

    Article  CAS  Google Scholar 

  9. Jiang Y, Li C, Liu H, Qin R, Ma H. J Mater Chem A, 2016, 4: 9958–9966

    Article  CAS  Google Scholar 

  10. Kung P, Li M, Lin P, Chiang Y, Chan C, Guo T, Chen P. Adv Mater Interfaces, 2018, 5: 1800882

    Article  CAS  Google Scholar 

  11. Heo JH, Han HJ, Kim D, Ahn TK, Im SH. Energy Environ Sci, 2015, 8: 1602–1608

    Article  CAS  Google Scholar 

  12. Zhang J, Xu LJ, Huang P, Zhou Y, Zhu YY, Yuan NY, Ding JN, Zhang ZG, Li YF. J Mater Chem C, 2017, 5: 12752–12757

    Google Scholar 

  13. Zhang J, Sun Q, Chen Q, Wang Y, Zhou Y, Song B, Yuan N, Ding J, Li Y. Adv Funct Mater, 2019, 29: 1900484

    Article  CAS  Google Scholar 

  14. Jia X, Jiang J, Zhang Y, Qiu J, Wang S, Chen Z, Yuan N, Ding J. Appl Phys Lett, 2018, 112: 143903

    Article  CAS  Google Scholar 

  15. Yang Y, Ostrowski DP, France RM, Zhu K, van de Lagemaat J, Luther JM, Beard MC. Nat Photon, 2016, 10: 53–59

    Article  CAS  Google Scholar 

  16. Serpetzoglou E, Konidakis I, Kakavelakis G, Maksudov T, Kymakis E, Stratakis E. ACS Appl Mater Interfaces, 2017, 9: 43910–43919

    Article  CAS  PubMed  Google Scholar 

  17. Delley B. J Chem Phys, 1990, 92: 508–517

    Article  CAS  Google Scholar 

  18. Delley B. J Chem Phys, 2000, 113: 7756–7764

    Article  CAS  Google Scholar 

  19. Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li CZ, Jen AKY, Chen H. Adv Energy Mater, 2017, 7: 1700012

    Article  CAS  Google Scholar 

  20. Mabrouk S, Zhang M, Wang Z, Liang M, Bahrami B, Wu Y, Wu J, Qiao Q, Yang S. J Mater Chem A, 2018, 6: 7950–7958

    Article  CAS  Google Scholar 

  21. Zhang J, Sun Q, Chen Q, Wang Y, Zhou Y, Song B, Jia X, Zhu Y, Zhang S, Yuan N, Ding J, Li Y. Sol RRL, 2020, 4: 1900421

    Article  CAS  Google Scholar 

  22. Reza KM, Mabrouk S, Qiao Q. Proc Nat Res Soc, 2018, 2: 02004

    Article  Google Scholar 

  23. Xue Q, Chen G, Liu M, Xiao J, Chen Z, Hu Z, Jiang XF, Zhang B, Huang F, Yang W, Yip HL, Cao Y. Adv Energy Mater, 2016, 6: 1502021

    Article  CAS  Google Scholar 

  24. Xu L, Huang P, Zhang J, Jia X, Ma Z, Sun Y, Zhou Y, Yuan NY, Ding JN. J Phys Chem C, 2017, 121: 21821–21826

    Article  CAS  Google Scholar 

  25. Li F, Zhu W, Bao C, Yu T, Wang Y, Zhou X, Zou Z. Chem Commun, 2016, 52: 5394–5397

    Article  CAS  Google Scholar 

  26. Zhang S, Hu Z, Zhang J, Jia X, Jiang J, Chen Y, Lin B, Jiang H, Fang B, Yuan N, Ding J. J Power Sources, 2019, 438: 226987

    Article  CAS  Google Scholar 

  27. Wu Y, Wang P, Wang S, Wang Z, Cai B, Zheng X, Chen Y, Yuan N, Ding J, Zhang WH. Chem SusChem, 2018, 11: 837–842

    CAS  Google Scholar 

  28. Herz LM. Annu Rev Phys Chem, 2016, 67: 65–89

    Article  CAS  PubMed  Google Scholar 

  29. Lee YH, Luo J, Humphry-Baker R, Gao P, Gratzel M, Nazeeruddin MK. Adv Funct Mater, 2015, 25: 3925–3933

    Article  CAS  Google Scholar 

  30. Price MB, Butkus J, Jellicoe TC, Sadhanala A, Briane A, Halpert JE, Broch K, Hodgkiss JM, Friend RH, Deschler F. Nat Commun, 2015, 6: 8420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manser JS, Karnat PV. Nat Photon, 2014, 8: 737–743

    Article  CAS  Google Scholar 

  32. Dursun I, Maity P, Yin J, Turedi B, Zhumekenov AA, Lee KJ, Mohammed OF, Bakr OM. Adv Energy Mater, 2019, 9: 1900084

    Article  CAS  Google Scholar 

  33. Fu J, Xu Q, Han G, Wu B, Huan CHA, Leek ML, Sum TC. Nat Commun, 2017, 8: 1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wu X, Trinh MT, Zhu XY. J Phys Chem C, 2015, 119: 14714–14721

    Article  CAS  Google Scholar 

  35. Bernardi M, Grossman JC. Energy Environ Sci, 2016, 9: 2197–2218

    Article  Google Scholar 

  36. Metzger WK. Sol Energy Mater Sol Cells, 2008, 92: 1123–1135

    Article  CAS  Google Scholar 

  37. Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C. J Am Chem Soc, 2014, 136: 12205–12208

    Article  CAS  PubMed  Google Scholar 

  38. Shao S, Abdu-Aguye M, Sherkar TS, Fang HH, Adjokatse S, Brink G, Kooi BJ, Koster LJA, Loi MA. Adv Funct Mater, 2016, 26: 8094–8102

    Article  CAS  Google Scholar 

  39. Leijtens T, Stranks SD, Eperon GE, Lindblad R, Johansson EMJ, McPherson IJ, Rensmo H, Ball JM, Lee MM, Snaith HJ. ACS Nano, 2014, 8: 7147–7155

    Article  CAS  PubMed  Google Scholar 

  40. Ishioka K, Barker Jr. BG, Yanagida M, Shirai Y, Miyano K. J Phys Chem Lett, 2017, 8: 3902–3907

    Article  CAS  PubMed  Google Scholar 

  41. Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Gratzel M, Moser JE. Nat Photon, 2014, 8: 250–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2017YFB037001), the National Natural Science Foundation of China (91648109, 51603021, 51602031, 51673139), Jiangsu Provincial "333" High-level Talent Training Project, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Applied Basic Research Program of Changzhou (CJ20190050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningyi Yuan or Jianning Ding.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2019_9728_MOESM1_ESM.docx

Bis(4-methylthio)phenyl)amine-based hole transport materials for highly-efficient perovskite solar cells: insight into the carrier ultrafast dynamics and interfacial transport

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Zhang, Y., Zhang, J. et al. Bis(4-methylthio)phenyl)amine-based hole transport materials for highly-efficient perovskite solar cells: insight into the carrier ultrafast dynamics and interfacial transport. Sci. China Chem. 63, 827–832 (2020). https://doi.org/10.1007/s11426-019-9728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9728-7

Keywords

Navigation