Skip to main content
Log in

Theranostic nanosystem mediating cascade catalytic reactions for effective immunotherapy of highly immunosuppressive and poorly penetrable pancreatic tumor

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

The dense desmoplastic stroma and immunosuppressive microenvironment of pancreatic cancer hinder the penetration of drugs and induce a considerable resistance to conventional chemoradiotherapy. Although nanomedicine has recently shown attractive potential in cancer immunotherapy, it remains a great challenge to achieve efficient drug delivery and potent immune activation. Here, a stimuli-responsive nanosystem, comprising superparamagnetic iron oxide nanocrystals and nitric oxide (NO) donors, was developed for in-situ triggered catalytic cascade reaction to produce abundant free radicals and remodel the anti-tumor immunity. The nanosystem was activated in the tumor microenvironment to produce NO which dilated the tumor vasculature for efficient drug delivery, and the iron oxide nanocrystals catalyzed the reaction of NO to generate reactive oxygen-nitrogen species (RONS) with high cytotoxicity. Moreover, owing to the catalytic cascade reactions mediated by the nanosystem, the tumor associated macrophages (TAMs) were converted to a proinflammatory M1 phenotype and tumor infiltration of effector T cells was promoted to result in potent anti-tumor immunotherapy which could be readily monitored with magnetic resonance imaging (MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. World J Gastroenterol, 2018, 24: 4846–4861

    Article  PubMed  PubMed Central  Google Scholar 

  2. Farrow B, Albo D, Berger DH. J Surg Res, 2008, 149: 319–328

    Article  PubMed  Google Scholar 

  3. Liu Q, Liao Q, Zhao Y. Cancer Cell Int, 2017, 17: 68

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ren B, Cui M, Yang G, Wang H, Feng M, You L, Zhao Y. Mol Cancer, 2018, 17: 108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, Sakoda M, Ueno S, Natsugoe S, Takao S. J Surg Res, 2011, 167: e211–e219

    Article  PubMed  Google Scholar 

  6. Wynn TA, Chawla A, Pollard JW. Nature, 2013, 496: 445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. Crit Rev Oncol Hematol, 2008, 66: 1–9

    Article  PubMed  Google Scholar 

  8. Han X, Li Y, Xu Y, Zhao X, Zhang Y, Yang X, Wang Y, Zhao R, Anderson GJ, Zhao Y, Nie G. Nat Commun, 2018, 9: 3390

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nat Nanotech, 2007, 2: 577–583

    Article  CAS  Google Scholar 

  10. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, Coussens LM, Daldrup-Link HE. Nat Nanotech, 2016, 11: 986–994

    Article  CAS  Google Scholar 

  11. Liang M, Yan X. Acc Chem Res, 2019, 52: 2190–2200

    Article  CAS  PubMed  Google Scholar 

  12. Liou GY, Storz P. Free Radical Res, 2010, 44: 479–496

    Article  CAS  Google Scholar 

  13. Thannickal VJ, Fanburg BL. Am J Physiol-Lung Cell Mol Physiol, 2000, 279: L1005–L1028

    Article  CAS  PubMed  Google Scholar 

  14. Zhu H, Li J, Qi X, Chen P, Pu K. Nano Lett, 2018, 18: 586–594

    Article  CAS  PubMed  Google Scholar 

  15. Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J. J Am Chem Soc, 2017, 139: 1275–1284

    Article  CAS  PubMed  Google Scholar 

  16. Kotagiri N, Sudlow GP, Akers WJ, Achilefu S. Nat Nanotech, 2015, 10: 370–379

    Article  CAS  Google Scholar 

  17. He Y, Chen X, Zhang Y, Wang Y, Cui M, Li G, Liu X, Fan H. Sci China Life Sci, 2022, 65: 184–192

    Article  CAS  PubMed  Google Scholar 

  18. Fukumura D, Kashiwagi S, Jain RK. Nat Rev Cancer, 2006, 6: 521–534

    Article  CAS  PubMed  Google Scholar 

  19. Fukumura D, Jain RK. J Cell Biochem, 2007, 101: 937–949

    Article  CAS  PubMed  Google Scholar 

  20. Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ. Chem Rev, 2002, 102: 1091–1134

    Article  CAS  PubMed  Google Scholar 

  21. Huerta S, Chilka S, Bonavida B. Int J Oncol, 1992, 33: 909–927

    Google Scholar 

  22. Ozcan A, Ogun M. Basic principles clinical significance of oxidative stress. In: Biochemistry of Reactive Oxygen and Nitrogen Species. IntechOpen, 2015. 37–58

  23. Hirst DG, Robson T. Front Biosci, 2007, 12: 3406–3418

    Article  CAS  PubMed  Google Scholar 

  24. Liu MD, Guo DK, Zeng RY, Guo WH, Ding XL, Li CX, Chen Y, Sun Y, Zhang XZ. Small Methods, 2021, 5: 2100361

    Article  CAS  Google Scholar 

  25. Van Buren II G, Camp ER, Yang AD, Gray MJ, Fan F, Somcio R, Ellis LM. Expert Opin Therapeutic Targets, 2006, 10: 689–701

    Article  Google Scholar 

  26. Tanaka HY, Kano MR. Cancer Sci, 2018, 109: 2085–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li B, Cai M, Lin L, Sun W, Zhou Z, Wang S, Wang Y, Zhu K, Shuai X. Biomater Sci, 2019, 7: 1529–1542

    Article  CAS  PubMed  Google Scholar 

  28. Guan X, Li J, Cai J, Huang S, Liu H, Wang S, Zhang X, Sun Y, Liu H, Xie G, Wang Z. Chem Eng J, 2021, 425: 130579

    Article  CAS  Google Scholar 

  29. Huo M, Wang L, Chen Y, Shi J. Nat Commun, 2017, 8: 357

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Wan SS, Li CX, Xu L, Cheng H, Zhang XZ. Nano Lett, 2018, 18: 7609–7618

    Article  CAS  PubMed  Google Scholar 

  31. Kostevšek N. Magnetochemistry, 2020, 6: 11

    Article  Google Scholar 

  32. Du JZ, Du XJ, Mao CQ, Wang J. J Am Chem Soc, 2011, 133: 17560–17563

    Article  CAS  PubMed  Google Scholar 

  33. Chen G, Xu M, Zhao S, Sun J, Yu Q, Liu J. ACS Appl Mater Interfaces, 2017, 9: 33645–33659

    Article  CAS  PubMed  Google Scholar 

  34. Guan Q, Guo R, Huang S, Zhang F, Liu J, Wang Z, Yang X, Shuai X, Cao Z. J Control Release, 2020, 320: 392–403

    Article  CAS  PubMed  Google Scholar 

  35. Zhong Y, Zhang J, Zhang J, Hou Y, Chen E, Huang D, Chen W, Haag R. Adv Funct Mater, 2021, 31: 2007544

    Article  CAS  Google Scholar 

  36. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Proc Natl Acad Sci USA, 1990, 87: 1620–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heusinkveld M, van der Burg SH. J Transl Med, 2011, 9: 1–4

    Article  Google Scholar 

  38. Sung YC, Jin PR, Chu LA, Hsu FF, Wang MR, Chang CC, Chiou SJ, Qiu JT, Gao DY, Lin CC, Chen YS, Hsu YC, Wang J, Wang FN, Yu PL, Chiang AS, Wu AYT, Ko JJS, Lai CPK, Lu TT, Chen Y. Nat Nanotechnol, 2019, 14: 1160–1169

    Article  CAS  PubMed  Google Scholar 

  39. Camp ER, Yang A, Liu W, Fan F, Somcio R, Hicklin DJ, Ellis LM. Clin Cancer Res, 2006, 12: 2628–2633

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, Zhou Z, Yu Q, Tang J, Liu X, Gan Z, Mo R, Gu Z, Shen Y. Nat Nanotechnol, 2019, 14: 799–809

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Zhang G, Li Q, Liao C, Huang L, Ke T, Jiang H, Han D. Quant Imag Med Surg, 2019, 9: 160–170

    Article  Google Scholar 

  42. Yu Q, Liu Y, Cao C, Le F, Qin X, Sun D, Liu J. Nanoscale, 2014, 6: 9279–9292

    Article  CAS  PubMed  Google Scholar 

  43. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Nat Commun, 2016, 7: 13193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, Du JZ, Wang J. Nano Lett, 2017, 17: 3822–3829

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51933011, 31971296), the Key Areas Research and Development Program of Guangzhou (202007020006, 2019B020235001), the Natural Science Foundation of the Guangdong Province (2021A1515011799), the Opening Project of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201922), and the Science and Technology Project of Yantian District in Shenzhen City, Guangdong Province, China (20190106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Wang or Xintao Shuai.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting information

11426_2022_1262_MOESM1_ESM.docx

Theranostic nanosystem mediating cascade catalytic reactions for effective immunotherapy of highly immunosuppressive and poorly penetrable pancreatic tumor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Cai, Y., Li, B. et al. Theranostic nanosystem mediating cascade catalytic reactions for effective immunotherapy of highly immunosuppressive and poorly penetrable pancreatic tumor. Sci. China Chem. 65, 1383–1400 (2022). https://doi.org/10.1007/s11426-022-1262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1262-x

Navigation