Skip to main content
Log in

Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this study, the morphological distribution of Ru on nitrogen-doped graphene (NG) could be rationally regulated via modulating the combination mode between Ru precursor and the zeolite imidazolate framework-8 (ZIF-8). The cation exchange and host-guest strategies respectively resulted in two different combination modes between Ru precursor and ZIF-8 anchored on graphene. Following pyrolysis of the above precursors, Ru single-atom sites (SASs) with and without Ru nanoparticles (NPs) were formed selectively on NG (denoted as Ru SASs+NPs/NG and Ru SASs/NG, respectively). Ru SASs+NPs/NG exhibited excellent hydrogen evolution reaction (HER) performance in alkaline solutions (η10=12 mV, 12.57 A mg−1Ru at 100 mV), which is much better than Ru SASs/NG. The experimental and theoretical study revealed that Ru SASs could adsorb hydrogen with optimal adsorption strength, while Ru NPs could lower the barrier of water molecule dissociation, and thus Ru SASs and Ru NPs could synergistically promote the catalytic performance of HER in alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi Y, Li M, Yu Y, Zhang B. Energy Environ Sci, 2020, 13: 4564–4582

    Article  CAS  Google Scholar 

  2. Lagadec MF, Grimaud A. Nat Mater, 2020, 19: 1140–1150

    Article  CAS  PubMed  Google Scholar 

  3. de Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. Science, 2019, 364: eaav3506

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Gong T, Zhang J, Zheng X, Mao J, Liu H, Li Y, Hao Q. Appl Catal B-Environ, 2020, 262: 118245

    Article  CAS  Google Scholar 

  5. Sarwar S, Nautiyal A, Cook J, Yuan Y, Li J, Uprety S, Shahbazian-Yassar R, Wang R, Park M, Bozack MJ, Zhang X. Sci China Mater, 2019, 63: 62–74

    Article  Google Scholar 

  6. Cao Y, Liu H, Bo X, Wang F. Sci China Chem, 2015, 58: 501–507

    Article  CAS  Google Scholar 

  7. Lee DK, Lee D, Lumley MA, Choi KS. Chem Soc Rev, 2019, 48: 2126–2157

    Article  CAS  PubMed  Google Scholar 

  8. Anantharaj S, Noda S, Jothi VR, Yi SC, Driess M, Menezes PW. Angew Chem Int Ed, 2021, 60: 18981–19006

    Article  CAS  Google Scholar 

  9. Zhao Z, Liu H, Gao W, Xue W, Liu Z, Huang J, Pan X, Huang Y. J Am Chem Soc, 2018, 140: 9046–9050

    Article  CAS  PubMed  Google Scholar 

  10. Zhao X, Zhang Z, Cao X, Hu J, Wu X, Ng AYR, Lu GP, Chen Z. Appl Catal B-Environ, 2020, 260: 118156

    Article  CAS  Google Scholar 

  11. Feng Q, Wang Q, Zhang Z, Xiong Y, Li H, Yao Y, Yuan XZ, Williams MC, Gu M, Chen H, Li H, Wang H. Appl Catal B-Environ, 2019, 244: 494–501

    Article  CAS  Google Scholar 

  12. Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang L, Zhang J. Electrochem Energ Rev, 2018, 1: 483–530

    Article  Google Scholar 

  13. Ali A, Shen PK. Electrochem Energ Rev, 2020, 3: 370–394

    Article  CAS  Google Scholar 

  14. Ledezma-Yanez I, Wallace WDZ, Sebastián-Pascual P, Climent V, Feliu JM, Koper MTM. Nat Energy, 2017, 2: 17031

    Article  CAS  Google Scholar 

  15. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA. Energy Environ Sci, 2014, 7: 2255–2260

    Article  CAS  Google Scholar 

  16. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM. Science, 2011, 334: 1256–1260

    Article  CAS  PubMed  Google Scholar 

  17. Ye S, Luo F, Xu T, Zhang P, Shi H, Qin S, Wu J, He C, Ouyang X, Zhang Q, Liu J, Sun X. Nano Energy, 2020, 68: 104301

    Article  CAS  Google Scholar 

  18. Zheng Y, Jiao Y, Vasileff A, Qiao SZ. Angew Chem Int Ed, 2018, 57: 7568–7579

    Article  CAS  Google Scholar 

  19. Li L, Wang P, Shao Q, Huang X. Chem Soc Rev, 2020, 49: 3072–3106

    Article  CAS  PubMed  Google Scholar 

  20. Ye S, Luo F, Zhang Q, Zhang P, Xu T, Wang Q, He D, Guo L, Zhang Y, He C, Ouyang X, Gu M, Liu J, Sun X. Energy Environ Sci, 2019, 12: 1000–1007

    Article  CAS  Google Scholar 

  21. Zhao D, Zhuang Z, Cao X, Zhang C, Peng Q, Chen C, Li Y. Chem Soc Rev, 2020, 49: 2215–2264

    Article  CAS  PubMed  Google Scholar 

  22. Song Z, Zhang L, Doyle-Davis K, Fu X, Luo JL, Sun X. Adv Energy Mater, 2020, 10: 2215–2264

    Google Scholar 

  23. Zhuo HY, Zhang X, Liang JX, Yu Q, Xiao H, Li J. Chem Rev, 2020, 120: 12315–12341

    Article  CAS  PubMed  Google Scholar 

  24. Qin T, Wang Z, Wang Y, Besenbacher F, Otyepka M, Dong M. Nano-Micro Lett, 2021, 13: 183

    Article  CAS  Google Scholar 

  25. Zhang L, Jia Y, Gao G, Yan X, Chen N, Chen J, Soo MT, Wood B, Yang D, Du A, Yao X. Chem, 2018, 4: 285–297

    Article  CAS  Google Scholar 

  26. Zeng X, Shui J, Liu X, Liu Q, Li Y, Shang J, Zheng L, Yu R. Adv Energy Mater, 2018, 8: 1701345

    Article  Google Scholar 

  27. Yang J, Chen B, Liu X, Liu W, Li Z, Dong J, Chen W, Yan W, Yao T, Duan X, Wu Y, Li Y. Angew Chem Int Ed, 2018, 57: 9495–9500

    Article  CAS  Google Scholar 

  28. Hui L, Xue Y, Yu H, Liu Y, Fang Y, Xing C, Huang B, Li Y. J Am Chem Soc, 2019, 141: 10677–10683

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Pei J, He CT, Wan J, Ren H, Wang Y, Dong J, Wu K, Cheong WC, Mao J, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Adv Mater, 2018, 30: 1800396

    Article  Google Scholar 

  30. Sun T, Zhao S, Chen W, Zhai D, Dong J, Wang Y, Zhang S, Han A, Gu L, Yu R, Wen X, Ren H, Xu L, Chen C, Peng Q, Wang D, Li Y. Proc Natl Acad Sci USA, 2018, 115: 12692–12697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wen Y, Qi J, Zhao D, Liu J, Wei P, Kang X, Li X. Appl Catal B-Environ, 2021, 293: 120196

    Article  CAS  Google Scholar 

  32. Fang Y, Sun D, Niu S, Cai J, Zang Y, Wu Y, Zhu L, Xie Y, Liu Y, Zhu Z, Mosallanezhad A, Niu D, Lu Z, Shi J, Liu X, Rao D, Wang G, Qian Y. Sci China Chem, 2020, 63: 1563–1569

    Article  CAS  Google Scholar 

  33. Xiong F, Wang Z, Wu Z, Sun G, Xu H, Chai P, Huang W. Sci China Chem, 2019, 62: 199–204

    Article  CAS  Google Scholar 

  34. Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Jaroniec M, Qiao SZ. J Am Chem Soc, 2016, 138: 16174–16181

    Article  CAS  PubMed  Google Scholar 

  35. Green CL, Kucernak A. J Phys Chem B, 2002, 106: 1036–1047

    Article  CAS  Google Scholar 

  36. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC. J Phys-Condens Matter, 2002, 14: 2717–2744

    Article  CAS  Google Scholar 

  37. Hamann DR, Schlüter M, Chiang C. Phys Rev Lett, 1979, 43: 1494–1497

    Article  CAS  Google Scholar 

  38. Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Nat Mater, 2013, 12: 850–855

    Article  CAS  PubMed  Google Scholar 

  39. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  42. Perdew JP, Ernzerhof M, Burke K. J Chem Phys, 1996, 105: 9982–9985

    Article  CAS  Google Scholar 

  43. Grimme S. J Comput Chem, 2006, 27: 1787–1799

    Article  CAS  PubMed  Google Scholar 

  44. Xiao M, Gao L, Wang Y, Wang X, Zhu J, Jin Z, Liu C, Chen H, Li G, Ge J, He Q, Wu Z, Chen Z, Xing W. J Am Chem Soc, 2019, 141: 19800–19806

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Wang P, Yang J, Lu S, Li K, Liu G, Duan Y, Qiu J. Curr Alzheimer Resbon, 2021, 177: 344–356

    CAS  Google Scholar 

  46. Ding B, Fan Z, Lin Q, Wang J, Chang Z, Li T, Henzie J, Kim J, Dou H, Zhang X, Yamauchi Y. Small Methods, 2019, 3: 1900277

    Article  CAS  Google Scholar 

  47. Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt LPH, Kalinin A, Schöffler MS, Jahnke T, Lein M, Dörner R. Nat Commun, 2019, 10: 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu Q, Li G, Huang X, Wang Z, Yang H, Zhang Q, Liu J, He C. J Mater Chem A, 2019, 7: 19531–19538

    Article  CAS  Google Scholar 

  49. Li J, Zhang H, Samarakoon W, Shan W, Cullen DA, Karakalos S, Chen M, Gu D, More KL, Wang G, Feng Z, Wang Z, Wu G. Angew Chem Int Ed, 2019, 58: 18971–18980

    Article  CAS  Google Scholar 

  50. Jiao Y, Zheng Y, Davey K, Qiao SZ. Nat Energy, 2016, 1: 16130

    Article  CAS  Google Scholar 

  51. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Chem Soc Rev, 2015, 44: 2060–2086

    Article  CAS  PubMed  Google Scholar 

  52. Wang Z, Wu H, Li Q, Besenbacher F, Li Y, Zeng X, Dong M. Adv Sci, 2020, 7: 1901382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFC1909604), Shenzhen Key Projects of Technological Research (JSGG20200925145800001), Shenzhen Basic Research Project (JCYJ20190808145203535, JCYJ20190808144413257), and the Project of Natural Science Foundation of Guangdong Province (2020A1515010379). We are grateful to the Instrumental Analysis Center of Shenzhen University (Xili Campus) for providing the facilities for our material analyzes and the Electron Microscopy Center at Shenzhen University for AC HAADF-STEM characterization. Thanks to Dr. Yantong Xu helped for DFT calculation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghua Ye, Qianling Zhang, Xiaoping Ouyang, Xueliang Sun or Jianhong Liu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Chen, W., Zheng, L. et al. Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction. Sci. China Chem. 65, 521–531 (2022). https://doi.org/10.1007/s11426-021-1163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1163-7

Navigation