Skip to main content
Log in

Reversible on-off switching of spin-crossover behavior via photochemical [2+2] cycloaddition reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, we report the first example showing the reversible on-off switching of spin-crossover (SCO) property by solid state photochemical [2+2] reaction. The ultraviolet (UV) light-induced [2+2] cycloaddition reaction of 3-spy ligands in a two-dimensional (2D) Hofmann-type framework [Fe(3-spy)2{Pd(CN)4}] (1, 3-spy=3-styrylpyridine), which shows a hysteretic two-step SCO behavior, gives a 3D Hofmann-type framework [Fe(rctt-3-ppcb){Pd(CN)4}] (2, rctt-3-ppcb=rctt-1,3-bis(3-pyridyl)-2,4-bis(phenyl)cyclobutane, r=reference group, c=cis and t=trans) accompanied with the disappearing of SCO properties. Moreover, upon heating at 250 °C for 12 h, the rctt-3-ppcb ligand in 2 could be partially dedimerized to 3-spy with 68% completion through single-crystal-to-single-crystal (SCSC) transformation, giving the annealing complexes [Fe(3-spy)1.36(rctt-3-ppcb)0.32{Pd(CN)4}] (3) which display an incomplete SCO behavior. The 23 interconversion is successfully achieved via continuous UV irradiation and thermal annealing, demonstrating the effectiveness of photochemical [2+2] reaction on switching on-off SCO properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacGillivray LR, Papaefstathiou GS, Friscić T, Hamilton TD, Bucar DK, Chu Q, Varshney DB, Georgiev IG. Acc Chem Res, 2008, 41: 280–291

    Article  CAS  PubMed  Google Scholar 

  2. Georgiev IG, MacGillivray LR. Chem Soc Rev, 2007, 36: 1239–1248

    Article  CAS  PubMed  Google Scholar 

  3. Medishetty R, Park IH, Lee SS, Vittal JJ. Chem Commun, 2016, 52: 3989–4001

    Article  CAS  Google Scholar 

  4. Kusaka S, Kiyose A, Sato H, Hijikata Y, Hori A, Ma Y, Matsuda R. J Am Chem Soc, 2019, 141: 15742–15746

    Article  CAS  PubMed  Google Scholar 

  5. Park IH, Lee E, Lee SS, Vittal JJ. Angew Chem Int Ed, 2019, 58: 14860–14864

    Article  CAS  Google Scholar 

  6. Papaefstathiou GS, Zhong Z, Geng L, MacGillivray LR. J Am Chem Soc, 2004, 126: 9158–9159

    Article  CAS  PubMed  Google Scholar 

  7. Li NY, Liu D, Ren ZG, Lollar C, Lang JP, Zhou HC. Inorg Chem, 2018, 57: 849–856

    Article  CAS  PubMed  Google Scholar 

  8. Hutchins KM, Rupasinghe TP, Ditzler LR, Swenson DC, Sander JRG, Baltrusaitis J, Tivanski AV, MacGillivray LR. J Am Chem Soc, 2014, 136: 6778–6781

    Article  CAS  PubMed  Google Scholar 

  9. Dutta B, Dey A, Sinha C, Ray PP, Mir MH. Inorg Chem, 2018, 57: 8029–8032

    Article  CAS  PubMed  Google Scholar 

  10. Chanthapally A, Kole GK, Qian K, Tan GK, Gao S, Vittal JJ. Chem Eur J, 2012, 18: 7869–7877

    Article  CAS  PubMed  Google Scholar 

  11. Wang LF, Qiu JZ, Liu JL, Chen YC, Jia JH, Jover J, Ruiz E, Tong ML. Chem Commun, 2015, 51: 15358–15361

    Article  CAS  Google Scholar 

  12. Wang LF, Zhuang WM, Huang GZ, Chen YC, Qiu JZ, Ni ZP, Tong ML. Chem Sci, 2019, 10: 7496–7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li WX, Gu JH, Li HX, Dai M, Young DJ, Li HY, Lang JP. Inorg Chem, 2018, 57: 13453–13460

    Article  CAS  PubMed  Google Scholar 

  14. Sima JY, Li HX, Young DJ, Braunstein P, Lang JP. Chem Commun, 2019, 55: 3532–3535

    Article  CAS  Google Scholar 

  15. Medishetty R, Yap TTS, Koh LL, Vittal JJ. Chem Commun, 2013, 49: 9567–9569

    Article  CAS  Google Scholar 

  16. Pahari G, Bhattacharya B, Reddy CM, Ghoshal D. Chem Commun, 2019, 55: 12515–12518

    Article  CAS  Google Scholar 

  17. Park IH, Chanthapally A, Zhang Z, Lee SS, Zaworotko MJ, Vittal JJ. Angew Chem Int Ed, 2014, 53: 414–419

    Article  CAS  Google Scholar 

  18. Gütlich P, Goodwin HA. Spin Crossover in Transition Metal Compounds I. Berlin Heidelberg, NewYork: Springer-Verlag, 2004

    Book  Google Scholar 

  19. Feng M, Ruan ZY, Chen YC, Tong ML. Chem Commun, 2020, 56: 13702–13718

    Article  CAS  Google Scholar 

  20. Wu SG, Hoque MN, Zheng JY, Huang GZ, Anh NVH, Ungur L, Zhang WX, Ni ZP, Tong ML. CCS Chem, 2020, 2: 453–459

    Google Scholar 

  21. Halcrow MA. Chem Soc Rev, 2011, 40: 4119–4142

    Article  CAS  PubMed  Google Scholar 

  22. Muñoz MC, Real JA. Coord Chem Rev, 2011, 255: 2068–2093

    Article  Google Scholar 

  23. Real JA, Gaspar AB, Niel V, Muñoz MC. Coord Chem Rev, 2003, 236: 121–141

    Article  CAS  Google Scholar 

  24. Ni ZP, Liu JL, Hoque MN, Liu W, Li JY, Chen YC, Tong ML. Coord Chem Rev, 2017, 335: 28–43

    Article  CAS  Google Scholar 

  25. Krober J, Codjovi E, Kahn O, Groliere F, Jay C. J Am Chem Soc, 1993, 115: 9810–9811

    Article  CAS  Google Scholar 

  26. Niel V, Martinez-Agudo JM, Muñoz MC, Gaspar AB, Real JA. Inorg Chem, 2001, 40: 3838–3839

    Article  CAS  PubMed  Google Scholar 

  27. Piñeiro-López L, Valverde-Muñoz FJ, Trzop E, Muñoz MC, Seredyuk M, Castells-Gil J, da Silva I, Martí-Gastaldo C, Collet E, Real JA. Chem Sci, 2021, 12: 1317–1326

    Article  Google Scholar 

  28. Liu W, Peng YY, Wu SG, Chen YC, Hoque MN, Ni ZP, Chen XM, Tong ML. Angew Chem Int Ed, 2017, 56: 14982–14986

    Article  CAS  Google Scholar 

  29. Agustí G, Ohtani R, Yoneda K, Gaspar AB, Ohba M, Sánchez-Royo JF, Muñoz MC, Kitagawa S, Real JA. Angew Chem Int Ed, 2009, 48: 8944–8947

    Article  Google Scholar 

  30. Ohtani R, Yoneda K, Furukawa S, Horike N, Kitagawa S, Gaspar AB, Muñoz MC, Real JA, Ohba M. J Am Chem Soc, 2011, 133: 8600–8605

    Article  CAS  PubMed  Google Scholar 

  31. Clements JE, Price JR, Neville SM, Kepert CJ. Angew Chem Int Ed, 2014, 53: 10164–10168

    Article  CAS  Google Scholar 

  32. Resines-Urien E, Piñeiro-López L, Fernandez-Bartolome E, Gamonal A, Garcia-Hernandez M, Sánchez Costa J. Dalton Trans, 2020, 49: 7315–7318

    Article  CAS  PubMed  Google Scholar 

  33. Enríquez-Cabrera A, Routaboul L, Salmon L, Bousseksou A. Dalton Trans, 2019, 48: 16853–16856

    Article  PubMed  Google Scholar 

  34. Wang CF, Li RF, Chen XY, Wei RJ, Zheng LS, Tao J. Angew Chem Int Ed, 2015, 54: 1574–1577

    Article  CAS  Google Scholar 

  35. Roux C, Zarembowitch J, Gallois B, Granier T, Claude R. Inorg Chem, 1994, 33: 2273–2279

    Article  CAS  Google Scholar 

  36. Boillot ML, Roux C, Audière JP, Dausse A, Zarembowitch J. Inorg Chem, 1996, 35: 3975–3980

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi K, Hasegawa Y, Sakamoto R, Nishikawa M, Kume S, Nishibori E, Nishihara H. Inorg Chem, 2012, 51: 5188–5198

    Article  CAS  PubMed  Google Scholar 

  38. Tissot A, Boillot ML, Pillet S, Codjovi E, Boukheddaden K, Lawson Daku LM. J Phys Chem C, 2010, 114: 21715–21722

    Article  CAS  Google Scholar 

  39. Hasegawa Y, Kume S, Nishihara H. Dalton Trans, 2009, 280–284

  40. Rösner B, Milek M, Witt A, Gobaut B, Torelli P, Fink RH, Khusniyarov MM. Angew Chem Int Ed, 2015, 54: 12976–12980

    Article  Google Scholar 

  41. Estrader M, Salinas Uber J, Barrios LA, Garcia J, Lloyd-Williams P, Roubeau O, Teat SJ, Aromí G. Angew Chem Int Ed, 2017, 56: 15622–15627

    Article  CAS  Google Scholar 

  42. Nihei M, Suzuki Y, Kimura N, Kera Y, Oshio H. Chem Eur J, 2013, 19: 6946–6949

    Article  CAS  PubMed  Google Scholar 

  43. Sheldrick GM. Acta Crystlogr Found Crystlogr, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  44. Weihermüller J, Schlamp S, Dittrich B, Weber B. Inorg Chem, 2019, 58: 1278–1289

    Article  PubMed  Google Scholar 

  45. Sugaya T, Fujihara T, Naka T, Furubayashi T, Matsushita A, Isago H, Nagasawa A. Chem Eur J, 2018, 24: 17955–17963

    Article  CAS  PubMed  Google Scholar 

  46. Money VA, Carbonera C, Elhaïk J, Halcrow MA, Howard JAK, Létard JF. Chem Eur J, 2007, 13: 5503–5514

    Article  CAS  PubMed  Google Scholar 

  47. Paradis N, Chastanet G, Létard JF. Eur J Inorg Chem, 2012, 2012(22): 3618–3624

    Article  CAS  Google Scholar 

  48. Sciortino NF, Neville SM, Desplanches C, Létard JF, Martinez V, Real JA, Moubaraki B, Murray KS, Kepert CJ. Chem Eur J, 2014, 20: 7448–7457

    Article  CAS  PubMed  Google Scholar 

  49. Ragon F, Yaksi K, Sciortino NF, Chastanet G, Létard JF, D’Alessandro DM, Kepert CJ, Neville SM. Aust J Chem, 2014, 67: 1563–1573

    Article  CAS  Google Scholar 

  50. Cohen MD, Schmidt GMJ, Sonntag FI. J Chem Soc, 1964, 2000

  51. Schmidt GMJ. Pure Appl Chem, 1971, 27: 647–678

    Article  CAS  Google Scholar 

  52. Chernyshov D, Hostettler M, Törnroos KW, Bürgi HB. Angew Chem Int Ed, 2003, 42: 3825–3830

    Article  CAS  Google Scholar 

  53. Alacid E, Najera C. J Org Chem, 2008, 73: 2315–2322

    Article  CAS  PubMed  Google Scholar 

  54. Kucheriv OI, Shylin SI, Ksenofontov V, Dechert S, Haukka M, Fritsky IO, Gural’skiy I’A. Inorg Chem, 2016, 55: 4906–4914

    Article  CAS  PubMed  Google Scholar 

  55. Rath BB, Vittal JJ. J Am Chem Soc, 2020, 142: 20117–20123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0306001), the National Natural Sciences Foundation of China (21773316, 21801258, 21821003), and the Pearl River Talent Plan of Guangdong (2017BT01C161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Liang Tong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LF., Lv, BH., Wu, FT. et al. Reversible on-off switching of spin-crossover behavior via photochemical [2+2] cycloaddition reaction. Sci. China Chem. 65, 120–127 (2022). https://doi.org/10.1007/s11426-021-1093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1093-2

Keywords

Navigation