Skip to main content
Log in

Selective electrochemical oxidation of aromatic hydrocarbons and preparation of mono/multi-carbonyl compounds

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A selective electrochemical oxidation was developed under mild condition. Various mono-carbonyl and multi-carbonyl compounds can be prepared from different aromatic hydrocarbons with moderate to excellent yield and selectivity by virtue of this electrochemical oxidation. The produced carbonyl compounds can be further transformed into α-ketoamides, homoallylic alcohols and oximes in a one-pot reaction. In particular, a series of α-ketoamides were prepared in a one-pot continuous electrolysis. Mechanistic studies showed that 2,2,2-trifluoroethan-1-ol (TFE) can interact with catalyst species and generate the corresponding hydrogen-bonding complex to enhance the electrochemical oxidation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luque-Ortega JR, Reuther P, Rivas L, Dardonville C. J Med Chem, 2010, 53: 1788–1798

    Article  CAS  PubMed  Google Scholar 

  2. Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Chem Soc Rev, 2012, 41: 5185–5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu QF, Zhou B, Huang JM, Gao XM, Shu LD, Yang GY, Che CT. J Nat Prod, 2013, 76: 292–296

    Article  CAS  PubMed  Google Scholar 

  4. Choudhary U, Mir AA, Emrick T. Macromolecules, 2017, 50: 3772–3778

    Article  CAS  Google Scholar 

  5. Xie W, Wu Y, Zhang J, Mei Q, Zhang Y, Zhu N, Liu R, Zhang H. Eur J Med Chem, 2018, 145: 35–40

    Article  CAS  PubMed  Google Scholar 

  6. Ma S, Gu Z. Angew Chem Int Ed, 2005, 44: 7512–7517

    Article  CAS  Google Scholar 

  7. Zhang Q, Yang F, Wu Y. Chem Commun, 2013, 49: 6837–6839

    Article  CAS  Google Scholar 

  8. Ramgren SD, Garg NK. Org Lett, 2014, 16: 824–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran PH, Hansen PE, Nguyen HT, Le TN. Tetrahedron Lett, 2015, 56: 612–618

    Article  CAS  Google Scholar 

  10. Zhang C, Xu Z, Zhang L, Jiao N. Angew Chem Int Ed, 2011, 50: 11088–11092

    Article  CAS  Google Scholar 

  11. Zhang C, Zhang L, Jiao N. Adv Synth Catal, 2012, 354: 1293–1300

    Article  CAS  Google Scholar 

  12. Pieber B, Kappe CO. Green Chem, 2013, 15: 320–324

    Article  CAS  Google Scholar 

  13. Li Q, Huang Y, Chen T, Zhou Y, Xu Q, Yin SF, Han LB. Org Lett, 2014, 16: 3672–3675

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Chen T, Li Q, Zhou Y, Yin SF. Org Biomol Chem, 2015, 13: 7289–7293

    Article  CAS  PubMed  Google Scholar 

  15. Choudary BM, Prasad AD, Bhuma V, Swapna V. J Org Chem, 1992, 57: 5841–5844

    Article  CAS  Google Scholar 

  16. Lounis Z, Riahi A, Djafri F, Muzart J. Appl Catal A-Gen, 2006, 309: 270–272

    Article  CAS  Google Scholar 

  17. Verma S, Nasir Baig RB, Nadagouda MN, Varma RS. ACS Sustain Chem Eng, 2016, 4: 2333–2336

    Article  CAS  Google Scholar 

  18. Rezaeifard A, Khoshyan A, Jafarpour M, Pourtahmasb M. RSC Adv, 2017, 7: 15754–15761

    Article  CAS  Google Scholar 

  19. Urgoitia G, SanMartin R, Herrero MT, Domínguez E. Green Chem, 2011, 13: 2161–2166

    Article  CAS  Google Scholar 

  20. Zhou Y, Long J, Li Y. Chin J Catal, 2016, 37: 955–962

    Article  CAS  Google Scholar 

  21. Guo C, Zhang Y, Zhang Y, Wang J. Chem Commun, 2018, 54: 3701–3704

    Article  CAS  Google Scholar 

  22. Karthikeyan P, Bhagat PR, Kumar SS. Chin Chem Lett, 2012, 23: 681–684

    Article  CAS  Google Scholar 

  23. Ang WJ, Lam Y. Org Biomol Chem, 2015, 13: 1048–1052

    Article  CAS  PubMed  Google Scholar 

  24. Wu H, Song J, Xie C, Hu Y, Liu S, Han B. ACS Sustain Chem Eng, 2018, 6: 13670–13675

    Article  CAS  Google Scholar 

  25. Napoly F, Kieffer R, Jean-Gérard L, Goux-Henry C, Draye M, Andrioletti B. Tetrahedron Lett, 2015, 56: 2517–2520

    Article  CAS  Google Scholar 

  26. Miao C, Zhao H, Zhao Q, Xia C, Sun W. Catal Sci Technol, 2016, 6: 1378–1383

    Article  CAS  Google Scholar 

  27. Li S, Zhu B, Lee R, Qiao B, Jiang Z. Org Chem Front, 2018, 5: 380–385

    Article  CAS  Google Scholar 

  28. Han X, Zhou Z, Wan C, Xiao Y, Qin Z. Synthesis, 2013, 45: 615–620

    Article  CAS  Google Scholar 

  29. Shaabani A, Keshipour S, Hamidzad M, Shaabani S. J Mol Catal A-Chem, 2014, 395: 494–499

    Article  CAS  Google Scholar 

  30. Jafarpour M, Rezaeifard A, Yasinzadeh V, Kargar H. RSC Adv, 2015, 5: 38460–38469

    Article  CAS  Google Scholar 

  31. Gaster E, Kozuch S, Pappo D. Angew Chem Int Ed, 2017, 56: 5912–5915

    Article  CAS  Google Scholar 

  32. Araghi M, Bokaei F. Polyhedron, 2013, 53: 15–19

    Article  CAS  Google Scholar 

  33. Shen D, Miao C, Wang S, Xia C, Sun W. Org Lett, 2014, 16: 1108–1111

    Article  CAS  PubMed  Google Scholar 

  34. Shaabani A, Hezarkhani Z, Badali E. RSC Adv, 2015, 5: 61759–61767

    Article  CAS  Google Scholar 

  35. Rezaeifard A, Jafarpour M, Farrokhi A, Parvin S, Feizpour F. RSC Adv, 2016, 6: 64640–64650

    Article  CAS  Google Scholar 

  36. Shaabani A, Borjian Boroujeni M, Laeini MS. Appl Organometal Chem, 2016, 30: 154–159

    Article  CAS  Google Scholar 

  37. Ding ZD, Zhu W, Li T, Shen R, Li Y, Li Z, Ren X, Gu ZG. Dalton Trans, 2017, 46: 11372–11379

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Xu D, Sun Q, Sun W. Chem Asian J, 2018, 13: 2458–2464

    Article  CAS  PubMed  Google Scholar 

  39. Mečiarova M, Toma S, Heribanová A. Tetrahedron, 2000, 56: 8561–8566

    Article  Google Scholar 

  40. Hashemi MM, Ghazanfari D, Karimi-Jaberi Z. Monatshefte fur Chem Chem Mon, 2004, 135: 185–188

    Article  CAS  Google Scholar 

  41. Khan AT, Parvin T, Choudhury LH, Ghosh S. Tetrahedron Lett, 2007, 48: 2271–2274

    Article  CAS  Google Scholar 

  42. Zhang J, Wang Z, Wang Y, Wan C, Zheng X, Wang Z. Green Chem, 2009, 11: 1973–1978

    Article  CAS  Google Scholar 

  43. Kumar RA, Maheswari CU, Ghantasala S, Jyothi C, Reddy KR. Adv Synth Catal, 2011, 353: 401–410

    Article  CAS  Google Scholar 

  44. Cui LQ, Liu K, Zhang C. Org Biomol Chem, 2011, 9: 2258–2265

    Article  CAS  PubMed  Google Scholar 

  45. Yin L, Wu J, Xiao J, Cao S. Tetrahedron Lett, 2012, 53: 4418–4421

    Article  CAS  Google Scholar 

  46. Xu Y, Hu JT, Yan J. Chin Chem Lett, 2012, 23: 891–894

    Article  CAS  Google Scholar 

  47. Badri R, Adlu M, Mohammadi MK. Arabian J Chem, 2015, 8: 62–65

    Article  CAS  Google Scholar 

  48. Shaabani A, Laeini MS, Shaabani S, Seyyedhamzeh M. New J Chem, 2016, 40: 2079–2082

    Article  CAS  Google Scholar 

  49. Ma Z, Zhang H, Yang Z, Ji G, Yu B, Liu X, Liu Z. Green Chem, 2016, 18: 1976–1982

    Article  CAS  Google Scholar 

  50. Tan J, Zheng T, Yu Y, Xu K. RSC Adv, 2017, 7: 15176–15180

    Article  CAS  Google Scholar 

  51. Hu Y, Zhou L, Lu W. Synthesis, 2017, 49: 4007–4016

    Article  CAS  Google Scholar 

  52. Liu J, Hu KF, Qu JP, Kang YB. Org Lett, 2017, 19: 5593–5596

    Article  CAS  PubMed  Google Scholar 

  53. Marko JA, Durgham A, Bretz SL, Liu W. Chem Commun, 2019, 55: 937–940

    Article  CAS  Google Scholar 

  54. Yang G, Zhang Q, Miao H, Tong X, Xu J. Org Lett, 2005, 7: 263–266

    Article  CAS  PubMed  Google Scholar 

  55. Dohi T, Takenaga N, Goto A, Fujioka H, Kita Y. J Org Chem, 2008, 73: 7365–7368

    Article  CAS  PubMed  Google Scholar 

  56. Telvekar VN, Sasane KA. Synth Commun, 2012, 42: 1325–1329

    Article  CAS  Google Scholar 

  57. Meng L, Su J, Zha Z, Zhang L, Zhang Z, Wang Z. Chem Eur J, 2013, 19: 5542–5545

    Article  CAS  PubMed  Google Scholar 

  58. Zhang W, Gacs J, Arends IWCE, Hollmann F. ChemCatChem, 2017, 9: 3821–3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hruszkewycz DP, Miles KC, Thiel OR, Stahl SS. Chem Sci, 2017, 8: 1282–1287

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Bao W, Tang Z, Guo B, Zhang S, Liu H, Huang S, Zhang Y, Rao Y. Green Chem, 2019, 21: 6073–6081

    Article  CAS  Google Scholar 

  61. Liu KJ, Duan ZH, Zeng XL, Sun M, Tang Z, Jiang S, Cao Z, He WM. ACS Sustain Chem Eng, 2019, 7: 10293–10298

    Article  CAS  Google Scholar 

  62. Zhu X, Liu Y, Liu C, Yang H, Fu H. Green Chem, 2020, 22: 4357–4363

    Article  CAS  Google Scholar 

  63. Zhong PF, Lin HM, Wang LW, Mo ZY, Meng XJ, Tang HT, Pan YM. Green Chem, 2020, 22: 6334–6339

    Article  CAS  Google Scholar 

  64. He MX, Mo ZY, Wang ZQ, Cheng SY, Xie RR, Tang HT, Pan YM. Org Lett, 2020, 22: 724–728

    Article  CAS  PubMed  Google Scholar 

  65. Meng X, Zhong P, Wang Y, Wang H, Tang H, Pan Y. Adv Synth Catal, 2020, 362: 506–511

    Article  CAS  Google Scholar 

  66. Wang X, Zhong Y, Mo Z, Wu S, Xu Y, Tang H, Pan Y. Adv Synth Catal, 2021, 363: 208–214

    Article  CAS  Google Scholar 

  67. Xu K, Zhang Z, Qian P, Zha Z, Wang Z. Chem Commun, 2015, 51: 11108–11111

    Article  CAS  Google Scholar 

  68. Wang Y, Qian P, Su JH, Li Y, Bi M, Zha Z, Wang Z. Green Chem, 2017, 19: 4769–4773

    Article  CAS  Google Scholar 

  69. Qian P, Zhou Z, Hu K, Wang J, Li Z, Zha Z, Wang Z. Org Lett, 2019, 21: 6403–6407

    Article  CAS  PubMed  Google Scholar 

  70. Hu K, Zhang Y, Zhou Z, Yang Y, Zha Z, Wang Z. Org Lett, 2020, 22: 5773–5777

    Article  CAS  PubMed  Google Scholar 

  71. Li Z, Sun Q, Qian P, Hu K, Zha Z, Wang Z. Chin Chem Lett, 2020, 31: 1855–1858

    Article  CAS  Google Scholar 

  72. Zhang Z, Su J, Zha Z, Wang Z. Chem Commun, 2013, 49: 8982–8984

    Article  CAS  Google Scholar 

  73. Zhang Z, Su J, Zha Z, Wang Z. Chem Eur J, 2013, 19: 17711–17714

    Article  CAS  PubMed  Google Scholar 

  74. Bégué JP, Delpon DB, Crousse B. Synlett, 2004, 1: 18–29

    Google Scholar 

  75. Shuklov I, Dubrovina N, Börner A. Synthesis, 2007, 2007(19): 2925–2943

    Article  Google Scholar 

  76. Legault CY. CYLview 1.0b. Universit de Sherbrooke, 2009. http://www.cylview.org

  77. Masui M, Hara S, Ueshima T, Kawaguchi T, Ozaki S. Chem Pharm Bull, 1983, 31: 4209–4211

    Article  CAS  Google Scholar 

  78. Ueda C, Noyama M, Ohmori H, Masui M. Chem Pharm Bull, 1987, 35: 1372–1377

    Article  CAS  Google Scholar 

  79. Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature, 2016, 533: 77–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kawamata Y, Yan M, Liu Z, Bao DH, Chen J, Starr JT, Baran PS. J Am Chem Soc, 2017, 139: 7448–7451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21672200, 21772185) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000). We are grateful for the assistance of the product characterization from the National Demonstration Center for Experimental Chemistry Education of University of Science and Technology of China. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenggen Zha or Zhiyong Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Y., Li, K. et al. Selective electrochemical oxidation of aromatic hydrocarbons and preparation of mono/multi-carbonyl compounds. Sci. China Chem. 64, 2134–2141 (2021). https://doi.org/10.1007/s11426-021-1061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1061-x

Keywords

Navigation