Skip to main content
Log in

An Improved Catalytic Performance of Fe(III)-promoted NHPI in the Oxidation of Hydrocarbons to Hydroperoxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

N-hydroxyphthalimide (NHPI) is a promising catalyst in aerobic oxidation of hydrocarbons to corresponding hydroperoxides. We have found that a trace amount of Fe(benz)3 or Fe(acac)3 (in concentration of less than 10−1 mmol/l and with the ratio of Fe(III): NHPI = 1:500) considerably accelerates the oxidation of cyclohexene and ethylbenzene, while retaining the selectivity to hydroperoxides at a level of 90%. As a consequence, the reaction temperature could be lowered down to 50–60 °C. The promoting effect of the additives was attributed to the ability of Fe(III) complexes to generate phthalimido-N-oxyl radicals (PINO) without participation in any transformations of hydrocarbon intermediates and hydroperoxides, thus ensuring selective formation and stability of the hydroperoxides.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ishii Y, Nakayama K, Takeno M, Sakaguchi S, Iwahama T, Nishiyama Y (1995) A novel catalysis of N-hydroxyphthalimide in the oxidation of organic substrates by molecular oxygen. J Org Chem 60:3934–3935

    Article  CAS  Google Scholar 

  2. Recupero F, Punta C (2007) Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem Rev 107:3800–3842

    Article  CAS  Google Scholar 

  3. Coseri S (2009) Phthalimide-N-oxyl (PINO) radical, a powerful catalytic agent: its generation and versatility towards various organic substrates. Catal Rev 51:218–292

    Article  CAS  Google Scholar 

  4. Sheldon RA, Arends IWCE (2004) Organocatalytic oxidations mediated by nitroxyl radicals. Adv Synth Catal 346:1051–1071

    Article  CAS  Google Scholar 

  5. Sheldon RA, Arends IWCE (2006) Catalytic oxidation mediated by metal ions and nitroxyl radicals. J Mol Catal A 251:200–214

    Article  CAS  Google Scholar 

  6. Ishii Y, Sakaguchi S (2006) Recent Progress in Aerobic Oxidation of Hydrocarbons by N-hydroxyimides. Catal Today 117:105–113 and references therein

    Article  CAS  Google Scholar 

  7. Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. J Catal 289:259–265

    Article  CAS  Google Scholar 

  8. Gao B, Meng S, Yang X (2015) Synchronously synthesizing and immobilizing N-hydroxyphthalimide on polymer microspheres and catalytic performance of solid catalyst in oxidation of ethylbenzene by molecular oxygen. Org Process Res Dev 19:1374–1382

    Article  CAS  Google Scholar 

  9. Latka P, Kasperczyk K, Orlinska B, Drozdek M, Skorupska B, Witek E (2016) N-hydroxyphthalimide immobilized on poly(HEA-co-DVB) as catalyst for aerobic oxidation processes. Catal Lett 146:1991–2000

    Article  CAS  Google Scholar 

  10. Huang C, Liu R, Yang C, Zhu H (2017) Iron(II) phthalocyanine immobilized SBA-15 catalysts: preparation, characterization and application for toluene selective aerobic oxidation. Inorg Chim Acta 467:307–315

    Article  CAS  Google Scholar 

  11. Bao L, Li X, Wu Z, Yuan X, Luo H (2016) N-hydroxyphthalimide incorporated onto Cu-BTC metal organic frameworks: an novel catalyst for aerobic oxidation of toluene. Res Chem Intermed 42:5527–5529

    Article  CAS  Google Scholar 

  12. Faraji AR, Mosazadeh S, Ashouri F (2017) Synthesis and characterization of cobalt-supported catalysts on modified magnetic nanoparticle: green and highly efficient heterogeneous nanocatalyst for selective oxidation of ethylbenzene, cyclohexene and oximes with molecular oxygen. J Colloid Interface Sci 506:10–26

    Article  CAS  Google Scholar 

  13. Tan Z, Zhu J, Yang W (2017) Conjugated copper(II) porphyrin polymer and N-hydroxyphthalimide as effective catalysts for selective oxidation of cyclohexylbenzene. Catal Commun 94:60–64

    Article  CAS  Google Scholar 

  14. Gao B, Bi C (2018) Some catalytic characteristics of compositional catalysts of immobilized N-hydroxyphthalimide and metal salts in aerobic oxidation of 1-phenylethanol. Catal Commun 115:6–11

    Article  CAS  Google Scholar 

  15. Łatka P, Berniak T, Drozdek M, Witek E, Kuśtrowski P (2018) Formation of N-hydroxyphthalimide species in poly(vinyl-diisopropyl-phtalate ester-co-styrene-co-divinylbenzene) and its application in aerobic oxidation of p-methoxytoluene. Catal Commun 115:73–77

    Article  Google Scholar 

  16. Mahmood S, Xu B-H, Ren T-L, Zhang Z-B, Liu X-M, Zyfng S-J (2018) Cobalt/N-hydroxyphthalimide(NHPI)-catalyzed aerobic oxidation of hydrocarbons with ionic liquid additive. Mol Catal 447:90–96

    Article  CAS  Google Scholar 

  17. Urgoitia G, San Martin R, Herrero MT, Dominguez E (2018) Recent advances in homogeneous metal-catalyzed aerobic C-H oxidation of benzylic compounds. Catalysts 8:640

    Article  Google Scholar 

  18. Faraji AR, Ashouri F, Hekmatian Z, Heydari S, Mosazadeh S (2019) Organosuperbase dendron manganese complex grafted on magnetic nanoparticles; heterogeneous catalyst for green and selective oxidation of ethylbenzene, cyclohexene and oximes by molecular oxygen. Polyhedron 157:90–106

    Article  CAS  Google Scholar 

  19. Melone L, Punta C (2013) Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review. Beilstein J Org Chem 9:1296–1310 and references therein

    Article  CAS  Google Scholar 

  20. Liu G, Tang R, Wang Z (2014) Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide. Catal Lett 144:717–722

    Article  CAS  Google Scholar 

  21. Zao Q, Chen K, Zhang W, Yao J, Li H (2015) Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues. J Mol Catal A 402:79–82

    Article  Google Scholar 

  22. Hu Y, Chen L, Li B (2016) NHPI/tert-butyl nitrite: a highly efficient metal-free catalytic system for aerobic oxidation of alcohols to carbonyl compounds using molecular oxygen as the terminal oxidant. Catal Commun 83:82–87

    Article  CAS  Google Scholar 

  23. Blandez JF, Navalón S, Álvaro M, García H (2018) N-hydroxyphthalimide anchored on diamond nanoparticles as a selective heterogeneous metal-free oxidation catalyst of benzylic hydrocarbons and cyclic alkenes by molecular O2. ChemCatChem 10:198–205

    Article  CAS  Google Scholar 

  24. Arends IWCE, Sasidharan M, Kühnle A, Duda M, Jost C, Sheldon RA (2002) Selective catalytic oxidation of cyclohexylbenzene to cyclohexylbenzene-1-hydroperoxide: a coproduct-free route to phenol. Tetrahedron 58:9055–9061

    Article  CAS  Google Scholar 

  25. Orlińska B, Zawadiak J (2013) Aerobic oxidation of isopropylaromatic hydrocarbons to hydroperoxides catalyzed by N-hydroxyphthalimide. React Kinet Mech Catal 110:15–30

    Article  Google Scholar 

  26. Kurganova EA, Koshel’ GN (2016) Liquid-phase oxidation of alkylaromatic hydrocarbons and their cyclohexyl derivatives to hydroperoxides in the presence of phthalimide catalysts. Rus J Gen Chem 86:1520–1530

    Article  CAS  Google Scholar 

  27. Kuznetsova NI, Kuznetsova LI, Yakovina OA, Babushkin DE, Bal’zhinimaev BS (2018) The N-hydroxyphthalimide catalyzed oxidation of cyclohexene to cyclohexenyl hydroperoxide: reasons for deactivation and stability of the catalyst. Catal Commun 114:84–88

    Article  CAS  Google Scholar 

  28. Melone L, Franchi P, Lucarini M, Punta C (2013) Sunlight induced oxidative photoactivation of N-hydroxyphthalimide mediated by naphthalene imides. Adv Synth Catal 355:3210–3220

    Article  CAS  Google Scholar 

  29. Kuznetsova LI, Kuznetsova NI, Yakovina OA, Zudin VN, Bal’zhinimaev BS (2018) Effect of transition metal compounds on the cyclohexene oxidation catalyzed by N-hydroxyphthalimide. Kinet Catal 59:735–743

    Article  CAS  Google Scholar 

  30. Miao C, Zhao H, Zhao Q, Xiaa C, Sun W (2016) NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes. Catal Sci Technol 6:1378–1383

    Article  CAS  Google Scholar 

  31. Bauer L, Miarka SV (1957) The chemistry of N-hydroxyphthalimide. J Am Chem Soc 79:1983–1985

    Article  CAS  Google Scholar 

  32. Krylov IB, Paveliev SA, Shelimov BN, Lokshin BV, Garbuzova IA, Tafeenko VA, Chernyshev VV, Budnikov AS, Nikishin GI, Terent’ev AO (2017) Selective cross-dehydrogenative C-O coupling of N-hydroxy compounds with pyrazolones. Introduction of the diacetyliminoxyl radical into the practice of organic synthesis. Org Chem Front 4:1947–1957

    Article  CAS  Google Scholar 

  33. Zhang C, Huang Z, Lu J, Luo N, Wang F (2018) Generation and confinement of long-lived N-oxyl radical and its photocatalysis. J Am Chem Soc 140:2032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. T.V. Larina for UV–Vis spectroscopy. This work was supported by budget project No 0303-2016-0006 for Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Kuznetsova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, N.I., Kuznetsova, L.I., Yakovina, O.A. et al. An Improved Catalytic Performance of Fe(III)-promoted NHPI in the Oxidation of Hydrocarbons to Hydroperoxides. Catal Lett 150, 1020–1027 (2020). https://doi.org/10.1007/s10562-019-02999-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02999-x

Keywords

Navigation