Skip to main content
Log in

Photocatalytic divergent decarboxylative amination: a metal-free access to aliphatic amines and hydrazines

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nitrogen-containing motifs are widely present in natural products, bioactive molecules, and drugs. Accordingly, effective synthetic methods with high efficiency and diversity are highly desirable. Here, we present the invention of a facile, visible light-mediated decarboxylative C(sp3)-N bond-forming reaction by employing abundant carboxylic acids as the feedstock and a commercial diazirine as a nitrogen donor. This process is amenable to access both imines and diaziridines, as the corresponding masked amines and hydrazines, through a selectable single or double nitrogen transfer from the diazirine, respectively. This divergent approach works well in both directions with various alkyl carboxylic acids, including primary, secondary, and tertiary acids, as well as natural products and drugs, thus affording a rapid, metal-free approach to build nitrogen-containing molecule libraries with considerable structural diversity, which could thus benefit the related study in context of chemical biology and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai Q, Zhou W. Chin J Chem, 2020, 38: 879–893

    Article  CAS  Google Scholar 

  2. Lawrence SA. Amines: Synthesis Properties and Applications. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  3. Ricci A. Amino Group Chemistry: From Synthesis to the Life Sciences. Weinheim: Weinheim Wiley-VCH, 2008

    Google Scholar 

  4. Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257–10274

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz-Castillo P, Buchwald SL. Chem Rev, 2016, 116: 12564–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew Chem Int Ed, 2017, 56: 16136–16179

    Article  CAS  Google Scholar 

  7. Park Y, Kim Y, Chang S. Chem Rev, 2017, 117: 9247–9301

    Article  CAS  PubMed  Google Scholar 

  8. Gan Z, Li G, Yang X, Yan Q, Xu G, Li G, Jiang YY, Yang D. Sci China Chem, 2020, 63: 1652–1658

    Article  CAS  Google Scholar 

  9. Chen H, Chen DH, Huang PQ. Sci China Chem, 2020, 63: 370–376

    Article  CAS  Google Scholar 

  10. Bissember AC, Lundgren RJ, Creutz SE, Peters JC, Fu GC. Angew Chem, 2013, 125: 5233–5237

    Article  Google Scholar 

  11. Do HQ, Bachman S, Bissember AC, Peters JC, Fu GC. J Am Chem Soc, 2014, 136: 2162–2167

    Article  CAS  PubMed  Google Scholar 

  12. Xuan J, Zhang ZG, Xiao WJ. Angew Chem Int Ed, 2015, 54: 15632–15641

    Article  CAS  Google Scholar 

  13. Huang H, Jia K, Chen Y. ACS Catal, 2016, 6: 4983–4988

    Article  CAS  Google Scholar 

  14. Wei Y, Hu P, Zhang M, Su W. Chem Rev, 2017, 117: 8864–8907

    Article  CAS  PubMed  Google Scholar 

  15. Patra T, Maiti D. Chem Eur J, 2017, 23: 7382–7401

    Article  CAS  PubMed  Google Scholar 

  16. Murarka S. Adv Synth Catal, 2018, 360: 1735–1753

    Article  CAS  Google Scholar 

  17. Schwarz J, König B. Green Chem, 2018, 20: 323–361

    Article  CAS  Google Scholar 

  18. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

  19. Okada K, Okamoto K, Oda M. J Am Chem Soc, 1988, 110: 8736–8738

    Article  CAS  Google Scholar 

  20. Wang Z, Zhu L, Yin F, Su Z, Li Z, Li C. J Am Chem Soc, 2012, 134: 4258–4263

    Article  CAS  PubMed  Google Scholar 

  21. Schnermann MJ, Overman LE. Angew Chem Int Ed, 2012, 51: 9576–9580

    Article  CAS  Google Scholar 

  22. Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J Am Chem Soc, 2016, 138: 2174–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huihui KMM, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LKG, Weix DJ. J Am Chem Soc, 2016, 138: 5016–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao W, Wurz RP, Peters JC, Fu GC. J Am Chem Soc, 2017, 139: 12153–12156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mao R, Balon J, Hu X. Angew Chem Int Ed, 2018, 57: 9501–9504

    Article  CAS  Google Scholar 

  26. Mao R, Frey A, Balon J, Hu X. Nat Catal, 2018, 1: 120–126

    Article  CAS  Google Scholar 

  27. Liang Y, Zhang X, MacMillan DWC. Nature, 2018, 559: 83–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakakibara Y, Ito E, Fukushima T, Murakami K, Itami K. Chem Eur J, 2018, 24: 9254–9258

    Article  CAS  PubMed  Google Scholar 

  29. Barzanò G, Mao R, Garreau M, Waser J, Hu X. Org Lett, 2020, 22: 5412–5416

    Article  PubMed  Google Scholar 

  30. Liu C, Wang X, Li Z, Cui L, Li C. J Am Chem Soc, 2015, 137: 9820–9823

    Article  CAS  PubMed  Google Scholar 

  31. Yatham VR, Bellotti P, König B. Chem Commun, 2019, 55: 3489–3492

    Article  CAS  Google Scholar 

  32. Xu R, Xu T, Yang M, Cao T, Liao S. Nat Commun, 2019, 10: 3752–3758

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shu X, Xu R, Ma Q, Liao S. Org Chem Front, 2020, 7: 2003–2007

    Article  CAS  Google Scholar 

  34. Xu T, Cao T, Yang M, Xu R, Nie X, Liao S. Org Lett, 2020, 22: 3692–3696

    Article  CAS  PubMed  Google Scholar 

  35. Cao T, Xu T, Xu R, Shu X, Liao S. Nat Commun, 2020, 11: 5340–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brunner J, Senn H, Richards FM. J Biol Chem, 1980, 255: 3313–3318

    Article  CAS  PubMed  Google Scholar 

  37. Delfino JM, Schreiber SL, Richards FM. J Am Chem Soc, 1993, 115: 3458–3474

    Article  CAS  Google Scholar 

  38. Das J. Chem Rev, 2011, 111: 4405–4417

    Article  CAS  PubMed  Google Scholar 

  39. During preparation of this manuscript, a related decarboxylative amination to diaziridines has been published recently through a different catalytic system (Fe(acac)3/Zn/TMSCl): Chandrachud PP, Wojtas L, Lopchuk JM. J Am Chem Soc, 2020, 142: 21743–21750

    Article  CAS  PubMed  Google Scholar 

  40. Ragnarsson U. Chem Soc Rev, 2001, 30: 205–213

    Article  CAS  Google Scholar 

  41. Barton DHR, Jaszberenyi JC, Theodorakis EA. J Am Chem Soc, 1992, 114: 5904–5905

    Article  CAS  Google Scholar 

  42. Schmitz E, Habisch D. Chem Ber, 1962, 95: 680–687

    Article  CAS  Google Scholar 

  43. Schneider Y, Prévost J, Gobin M, Legault CY. Org Lett, 2014, 16: 596–599

    Article  CAS  PubMed  Google Scholar 

  44. Kibriya G, Ghosh D, Hajra A. Sci China Chem, 2020, 63: 42–46

    Article  CAS  Google Scholar 

  45. Gale DM, Middleton WJ, Krespan CG. Am Chem Soc, 1966, 88: 3617–3623

    Article  Google Scholar 

  46. Barton DHR, Ozbalik N, Vacher B. Tetrahedron, 1988, 44: 7385–7392

    Article  CAS  Google Scholar 

  47. Barton DHR, Jaszberenyi JC, Theodorakis EA, Reibenspies JH. Am Chem Soc, 1993, 115: 8050–8059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21602028), Beijing National Laboratory for Molecular Sciences (BNLMS201913), the Recruitment Program of Global Experts, and Fuzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saihu Liao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, X., Xu, R. & Liao, S. Photocatalytic divergent decarboxylative amination: a metal-free access to aliphatic amines and hydrazines. Sci. China Chem. 64, 1756–1762 (2021). https://doi.org/10.1007/s11426-021-1048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1048-4

Keywords

Navigation