Skip to main content
Log in

Achieving over 16% efficiency for single-junction organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To achieve high photovoltaic performance of bulk hetero-junction organic solar cells (OSCs), a range of critical factors including absorption profiles, energy level alignment, charge carrier mobility and miscibility of donor and acceptor materials should be carefully considered. For electron-donating materials, the deep highest occupied molecular orbital (HOMO) energy level that is beneficial for high open-circuit voltage is much appreciated. However, a new issue in charge transfer emerges when matching such a donor with an acceptor that has a shallower HOMO energy level. More to this point, the chemical strategies used to enhance the absorption coefficient of acceptors may lead to increased molecular crystallinity, and thus result in less controllable phase-separation of photoactive layer. Therefore, to realize balanced photovoltaic parameters, the donor-acceptor combinations should simultaneously address the absorption spectra, energy levels, and film morphologies. Here, we selected two non-fullerene acceptors, namely BTPT-4F and BTPTT-4F, to match with a wide-bandgap polymer donor P2F-EHp consisting of an imide-functionalized benzotriazole moiety, as these materials presented complementary absorption and well-matched energy levels. By delicately optimizing the blend film morphology, we demonstrated an unprecedented power conversion efficiency of over 16% for the device based on P2F-EHp:BTPTT-4F, suggesting the great promise of materials matching toward high-performance OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazan GC. Sci China Chem, 2017, 60: 1109–1110

    Article  CAS  Google Scholar 

  2. Huang F. Acta Polym Sin, 2018: 1141–1143

    Google Scholar 

  3. Zhang K, Huang F. Cao Y. Acta Polym Sin, 2018, 1400–1414

    Google Scholar 

  4. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  5. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, doi: 10.1016/j.joule.2019.01.004

    Google Scholar 

  6. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  7. Fan B, Du X, Liu F, Zhong W, Ying L, Xie R, Tang X, An K, Xin J, Li N, Ma W, Brabec CJ, Huang F, Cao Y. Nat Energy, 2018, 3: 1051–1058

    Article  CAS  Google Scholar 

  8. Kang Q, Ye L, Xu B, An C, Stuard SJ, Zhang S, Yao H, Ade H, Hou J. Joule, 2019, 3: 227–239

    Article  CAS  Google Scholar 

  9. Liu W, Zhang J, Zhou Z, Zhang D, Zhang Y, Xu S, Zhu X. Adv Mater, 2018, 30: 1800403

    Article  CAS  Google Scholar 

  10. Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005

    Article  CAS  Google Scholar 

  11. Xu X, Bi Z, Ma W, Wang Z, Choy WCH, Wu W, Zhang G, Li Y, Peng Q. Adv Mater, 2017, 29: 1704271

    Article  CAS  Google Scholar 

  12. Ma X, Gao W, Yu J, An Q, Zhang M, Hu Z, Wang J, Tang W, Yang C, Zhang F. Energy Environ Sci, 2018, 11: 2134–2141

    Article  CAS  Google Scholar 

  13. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868

    Article  CAS  Google Scholar 

  15. Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell TP, Ding L. Sci Bull, 2017, 62: 1494–1496

    Article  CAS  Google Scholar 

  16. Dai S, Li T, Wang W, Xiao Y, Lau TK, Li Z, Liu K, Lu X, Zhan X. Adv Mater, 2018, 30: 1706571

    Article  CAS  Google Scholar 

  17. Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045–3049

    Article  CAS  Google Scholar 

  18. Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582

    Article  CAS  Google Scholar 

  19. Feng L, Yuan J, Zhang Z, Peng H, Zhang ZG, Xu S, Liu Y, Li Y, Zou Y. ACS Appl Mater Interfaces, 2017, 9: 31985–31992

    Article  CAS  PubMed  Google Scholar 

  20. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

    Article  CAS  Google Scholar 

  22. Shi X, Liao X, Gao K, Zuo L, Chen J, Zhao J, Liu F, Chen Y, Jen AKY. Adv Funct Mater, 2018, 28: 1802324

    Article  CAS  Google Scholar 

  23. Lan L, Chen Z, Hu Q, Ying L, Zhu R, Liu F, Russell TP, Huang F, Cao Y. Adv Sci, 2016, 3: 1600032

    Article  CAS  Google Scholar 

  24. Fan B, Zhang K, Jiang XF, Ying L, Huang F, Cao Y. Adv Mater, 2017, 29: 1606396

    Article  CAS  Google Scholar 

  25. Zheng N, Mahmood K, Zhong W, Liu F, Zhu P, Wang Z, Xie B, Chen Z, Zhang K, Ying L, Huang F, Cao Y. Nano Energy, 2019, 58: 724–731

    Article  CAS  Google Scholar 

  26. Fan B, Ying L, Wang Z, He B, Jiang XF, Huang F, Cao Y. Energy Environ Sci, 2017, 10: 1243–1251

    Article  CAS  Google Scholar 

  27. Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906

    Article  CAS  Google Scholar 

  28. Fan B, Zhu P, Xin J, Li N, Ying L, Zhong W, Li Z, Ma W, Huang F, Cao Y. Adv Energy Mater, 2018, 8: 1703085

    Article  CAS  Google Scholar 

  29. Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12: 157–163

    Article  CAS  Google Scholar 

  30. Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, 61: 427–436

    Article  CAS  Google Scholar 

  31. Zhong Z, Bu L, Zhu P, Xiao T, Fan B, Ying L, Lu G, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11: 8350–8356

    Article  CAS  PubMed  Google Scholar 

  32. Armin A, Kassal I, Shaw PE, Hambsch M, Stolterfoht M, Lyons DM, Li J, Shi Z, Burn PL, Meredith P. J Am Chem Soc, 2014, 136: 11465–11472

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356–3359

    Article  CAS  PubMed  Google Scholar 

  34. Guo B, Li W, Luo G, Guo X, Yao H, Zhang M, Hou J, Li Y, Wong WY. ACS Energy Lett, 2018, 3: 2566–2572

    Article  CAS  Google Scholar 

  35. Li N, Perea JD, Kassar T, Richter M, Heumueller T, Matt GJ, Hou Y, Güldal NS, Chen H, Chen S, Langner S, Berlinghof M, Unruh T, Brabec CJ. Nat Commun, 2017, 8: 14541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Phys Rev B, 2010, 81: 125204

    Article  CAS  Google Scholar 

  37. Ndjawa GON, Graham KR, Mollinger S, Wu DM, Hanifi D, Prasanna R, Rose BD, Dey S, Yu L, Brédas JL, McGehee MD, Salleo A, Amassian A. Adv Energy Mater, 2017, 7: 1601995

    Article  CAS  Google Scholar 

  38. Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T. Nat Energy, 2016, 1: 16118

    Article  CAS  Google Scholar 

  39. Etzold F, Howard IA, Mauer R, Meister M, Kim TD, Lee KS, Baek NS, Laquai F. J Am Chem Soc, 2011, 133: 9469–9479

    Article  CAS  PubMed  Google Scholar 

  40. Koster LJA, Mihailetchi VD, Blom PWM. Appl Phys Lett, 2006, 88: 052104

    Article  CAS  Google Scholar 

  41. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. Adv Mater, 2010, 22: E135–E138

    Google Scholar 

  42. Credgington D, Jamieson FC, Walker B, Nguyen TQ, Durrant JR. Adv Mater, 2012, 24: 2135–2141

    Article  CAS  PubMed  Google Scholar 

  43. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D, Nelson J. Phys Rev Appl, 2015, 4: 014020

    Article  CAS  Google Scholar 

  44. Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91633301, 51521002, 21822505, 21520102006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Ying or Fei Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Zhang, D., Li, M. et al. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 62, 746–752 (2019). https://doi.org/10.1007/s11426-019-9457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9457-5

Keywords

Navigation