Skip to main content
Log in

Real-time observation of dynamic heterogeneity of gold nanorods on plasma membrane with darkfield microscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The plasma membrane possesses a complicated structure, on which the protein clusters are randomly but orderly distributed to maintain the regular morphology and function of cells. Investigating the detailed dynamic behaviors of nanoparticles (NPs) on cytomembrane is of great importance to understand cellular mechanisms and advance the bio-nano technologies for drug delivery, photothermal therapy, immunotherapy, etc. In this work, to study the dynamic heterogeneous interactions between NPs and cell membrane with high resolution, we established a simple method to efficiently track the translational and rotational diffusion of individual gold nanorods (AuNRs) on cell membranes. This method is based on that an anisotropic AuNR appears as a colored spot under a darkfield microscope (DFM) equipped with a color camera. While obtaining its lateral position, the polar angle of the AuNR can be calculated simultaneously from intensity difference between the R and G channels. Careful analysis shows that the lateral motion of single AuNRs do not follow normal Brownian diffusion, which could be attributed to their hop diffusion in the dynamically varying picket-fence structure of the live cell membrane. Furthermore, 4 different rotation-translation patterns of the AuNR are observed due to spatiotemporal heterogeneity of the cytomembrane. This simple but robust method for simultaneously obtaining the location and orientation of anisotropic plasmonic nanoparticles could be further applied to the analysis of complicated biological and biomedical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Sci China Chem, 2018, 61: 1503–1552

    Article  CAS  Google Scholar 

  2. Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T. Seminars Immunol, 2005, 17: 3–21

    Article  CAS  Google Scholar 

  3. Tian FL, Yue TT, Li Y, Zhang XR. Sci China Chem, 2014, 57: 1662–1671

    Article  CAS  Google Scholar 

  4. Sezgin E, Levental I, Mayor S, Eggeling C. Nat Rev Mol Cell Biol, 2017, 18: 361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lingwood D, Simons K. Science, 2010, 327: 46–50

    Article  CAS  PubMed  Google Scholar 

  6. Krapf D. Curr Opin Cell Biol, 2018, 53: 15–21

    Article  CAS  PubMed  Google Scholar 

  7. Head BP, Patel HH, Insel PA. BioChim Biophysica Acta (BBA)-Biomembranes, 2014, 1838: 532–545

    Article  CAS  Google Scholar 

  8. Saxton MJ. Nat Methods, 2008, 5: 671–672

    Article  CAS  PubMed  Google Scholar 

  9. Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF. Chem Rev, 2017, 117: 7331–7376

    Article  CAS  PubMed  Google Scholar 

  10. Zhan S, Lou X, Xia F. Sci China Chem, 2017, 60: 1267–1276

    Article  CAS  Google Scholar 

  11. Gao Z, Deng S, Li J, Wang K, Li J, Wang L, Fan C. Sci China Chem, 2017, 60: 1305–1309

    Article  CAS  Google Scholar 

  12. Varshney P, Yadav V, Saini N. Immunology, 2016, 149: 13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW. Methods, 2017, 115: 80–90

    Article  CAS  PubMed  Google Scholar 

  14. Chen K, Gu Y, Sun W, Bin Dong W, Wang G, Fan X, Xia T, Fang N. Nat Commun, 2017, 8: 887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim DH, Kim DK, Zhou K, Park S, Kwon Y, Jeong MG, Lee NK, Ryu SH. Chem Sci, 2017, 8: 4823–4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim DH, Zhou K, Kim DK, Park S, Noh J, Kwon Y, Kim D, Song NW, Lee JB, Suh PG, Lee NK, Ryu SH. Angew Chem Int Ed, 2015, 54: 7028–7032

    Article  CAS  Google Scholar 

  17. Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP, Woods EC, Bertozzi CR, Tammi MI, Lidke DS, Johnson P, Mayor S, Jaqaman K, Grinstein S. Cell, 2018, 172: 305–317.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He W, Song H, Su Y, Geng L, Ackerson BJ, Peng HB, Tong P. Nat Commun, 2016, 7: 11701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Golan Y, Sherman E. Nat Commun, 2017, 8: 15851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinaud F, Clarke S, Sittner A, Dahan M. Nat Methods, 2010, 7: 275–285

    Article  CAS  PubMed  Google Scholar 

  21. Sau TK, Rogach AL. Adv Mater, 2010, 22: 1781–1804

    Article  CAS  PubMed  Google Scholar 

  22. Prashant K, Jain KSL, Ivan H, El-Sayed, Mostafa A, El-Sayed. J Phys Chem B, 2006, 110: 7238–7248

    Article  CAS  Google Scholar 

  23. Zhang M, Magagnosc DJ, Liberal I, Yu Y, Yun H, Yang H, Wu Y, Guo J, Chen W, Shin YJ, Stein A, Kikkawa JM, Engheta N, Gianola DS, Murray CB, Kagan CR. Nat Nanotech, 2017, 12: 228–232

    Article  CAS  Google Scholar 

  24. Peng H, Tang H, Jiang J. Sci China Chem, 2016, 59: 783–793

    Article  CAS  Google Scholar 

  25. Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB. Nano Lett, 2013, 13: 2163–2171

    Article  CAS  PubMed  Google Scholar 

  26. Xiao L, Qiao YX, He Y, Yeung ES. Anal Chem, 2010, 82: 5268–5274

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Shao L, Li Q, Wang J. Chem Soc Rev, 2013, 42: 2679–2724

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Sun W, Luo Y, Fang N. J Am Chem Soc, 2010, 132: 16417–16422

    Article  CAS  PubMed  Google Scholar 

  29. Xiao L, Ha JW, Wei L, Wang G, Fang N. Angew Chem Int Ed, 2012, 51: 7734–7738

    Article  CAS  Google Scholar 

  30. Kaplan L, Ierokomos A, Chowdary P, Bryant Z, Cui B. Sci Adv, 2018, 4: e1602170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao L, Qiao Y, He Y, Yeung ES. J Am Chem Soc, 2011, 133: 10638–10644

    Article  CAS  PubMed  Google Scholar 

  32. Xu D, He Y, Yeung ES. Anal Chem, 2014, 86: 3397–3404

    Article  CAS  PubMed  Google Scholar 

  33. Gu Y, Sun W, Wang G, Fang N. J Am Chem Soc, 2011, 133: 5720–5723

    Article  CAS  PubMed  Google Scholar 

  34. Ye Z, Wei L, Zeng X, Weng R, Shi X, Wang N, Chen L, Xiao L. Anal Chem, 2018, 90: 1177–1185

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, Wu R. Sci China Chem, 2015, 58: 780–792

    Article  CAS  Google Scholar 

  36. Wang L, Li J, Pan J, Jiang X, Ji Y, Li Y, Qu Y, Zhao Y, Wu X, Chen C. J Am Chem Soc, 2013, 135: 17359–17368

    Article  CAS  PubMed  Google Scholar 

  37. Xue C, Zheng X, Chen K, Tian Y, Hu G. J Phys Chem Lett, 2016, 7: 514–519.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21127009, 21425519, 21221003, 21475071, 21605045), the Tsinghua University Startup Fund, the Taishan Scholar Program of Shandong Province (ts201511027), and the Natural Science Foundation of Shandong (2018GGX102030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zonghua Wang, Bin Xiong or Yan He.

Electronic supplementary material

11426_2019_9444_MOESM1_ESM.pdf

Real-time monitoring translational and orientational heterogenicity of gold nanorods on plasma membrane with darkfield microscopy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, F., Xue, J., Wang, Z. et al. Real-time observation of dynamic heterogeneity of gold nanorods on plasma membrane with darkfield microscopy. Sci. China Chem. 62, 1072–1081 (2019). https://doi.org/10.1007/s11426-019-9444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9444-9

Keywords

Navigation