Skip to main content
Log in

Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Stimulated emission depletion (STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope, it is challenging to realize temporal synchronization between the excitation pulses and the depletion pulses. In this study, we present a simple and low-cost method to achieve pulse synchronization by using a condensed fluorescent dye as a depletion indicator. By using this method, almost all the confocal microscopes can be upgraded to a STED system without losing its original functions. After the pulse synchronization, our STED system achieved sub-100-nm resolution for fluorescent nanospheres and single-cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao Y, Chen F, Li Q, Wang L, Fan C. Chem Rev, 2015, 115: 12491–12545

    Article  CAS  Google Scholar 

  2. Zhao Y, Qi L, Chen F, Zhao Y, Fan C. Biosens Bioelectron, 2013, 41: 764–770

    Article  CAS  Google Scholar 

  3. Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY. Chem Soc Rev, 2010, 39: 4234–4243

    Article  CAS  Google Scholar 

  4. Xu K, Zhong G, Zhuang X. Science, 2013, 339: 452–456

    Article  CAS  Google Scholar 

  5. Urban NT, Willig KI, Hell SW, Nägerl UV. Biophys J, 2011, 101: 1277–1284

    Article  CAS  Google Scholar 

  6. D’Este E, Kamin D, Göttfert F, El-Hady A, Hell SW. Cell Rep, 2015, 10: 1246–1251

    Article  Google Scholar 

  7. Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC, Kromann EB, Phan T, Rivera-Molina FE, Myers JR, Irnov I, Lessard M, Zhang Y, Handel MA, Jacobs-Wagner C, Lusk CP, Rothman JE, Toomre D, Booth MJ, Bewersdorf J. Cell, 2016, 166: 1028–1040

    Article  CAS  Google Scholar 

  8. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA. Nat Cell Biol, 2012, 14: 1159–1168

    Article  CAS  Google Scholar 

  9. Lawo S, Hasegan M, Gupta GD, Pelletier L. Nat Cell Biol, 2012, 14: 1148–1158

    Article  CAS  Google Scholar 

  10. Jia S, Chao J, Fan C, Liu H. Prog Chem, 2014, 26: 695–705

    CAS  Google Scholar 

  11. Elie-Caille C, Severin F, Helenius J, Howard J, Muller DJ, Hyman AA. Curr Biol, 2007, 17: 1765–1770

    Article  CAS  Google Scholar 

  12. Viswanathan S, Williams ME, Bloss EB, Stasevich TJ, Speer CM, Nern A, Pfeiffer BD, Hooks BM, Li WP, English BP, Tian T, Henry GL, Macklin JJ, Patel R, Gerfen CR, Zhuang X, Wang Y, Rubin GM, Looger LL. Nat Meth, 2015, 12: 568–576

    Article  CAS  Google Scholar 

  13. de Boer P, Hoogenboom JP, Giepmans BNG. Nat Meth, 2015, 12: 503–513

    Article  Google Scholar 

  14. Zhu Y, Earnest T, Huang Q, Cai X, Wang Z, Wu Z, Fan C. Adv Mater, 2014, 26: 7889–7895

    Article  CAS  Google Scholar 

  15. Rambo RP, Tainer JA. Annu Rev Biophys, 2013, 42: 415–441

    Article  CAS  Google Scholar 

  16. Tian T, Zhang JC, Lei HZ, Zhu Y, Shi JY, Hu J, Huang Q, Fan CH, Sun YH. Nucl Sci Tech, 2015, 3: 102–107

    Article  Google Scholar 

  17. Xu H, Li Q, Wang L, He Y, Shi J, Tang B, Fan C. Chem Soc Rev, 2014, 43: 2650–2661

    Article  CAS  Google Scholar 

  18. Hou SG, Liang L, Deng SH, Chen JF, Huang Q, Cheng Y, Fan CH. Sci China Chem, 2014, 57: 100–106

    Article  CAS  Google Scholar 

  19. Ke MT, Nakai Y, Fujimoto S, Takayama R, Yoshida S, Kitajima TS, Sato M, Imai T. Cell Rep, 2016, 14: 2718–2732

    Article  CAS  Google Scholar 

  20. Willets KA. Phys Chem Chem Phys, 2013, 15: 5345–5354

    Article  CAS  Google Scholar 

  21. Lu RW, Wang BQ, Zhang QX, Yao XC. Biomed Opt Express, 2013, 4: 1673–1682

    Article  Google Scholar 

  22. Abbe E. Archiv für mikroskopische Anatomie, 1873, 9: 413–418

    Article  Google Scholar 

  23. Nägerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T. Proc Natl Acad Sci USA, 2008, 105: 18982–18987

    Article  Google Scholar 

  24. Liu Y, Ding Y, Alonas E, Zhao W, Santangelo PJ, Jin D, Piper JA, Teng J, Ren Q, Xi P. PLoS ONE, 2012, 7: e40003

    Google Scholar 

  25. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Science, 2006, 313: 1642–1645

    Article  CAS  Google Scholar 

  26. Rust MJ, Bates M, Zhuang X. Nat Meth, 2006, 3: 793–796

    Article  CAS  Google Scholar 

  27. Hess ST, Girirajan TPK, Mason MD. Biophys J, 2006, 91: 4258–4272

    Article  CAS  Google Scholar 

  28. Hell SW, Wichmann J. Opt Lett, 1994, 19: 780–782

    Article  CAS  Google Scholar 

  29. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Proc Natl Acad Sci USA, 2000, 97: 8206–8210

    Article  CAS  Google Scholar 

  30. Huang B, Babcock H, Zhuang X. Cell, 2010, 143: 1047–1058

    Article  CAS  Google Scholar 

  31. Wang S, Deng S, Cai X, Hou S, Li J, Z Gao, Li J, Wang L, Fan C. Sci China Chem, 2016: 1519–1524

    Google Scholar 

  32. Rankin BR, Kellner RR, Hell SW. Opt Lett, 2008, 33: 2491–2493

    Article  Google Scholar 

  33. Rankin BR, Hell SW. Opt Express, 2009, 17: 15679–15684

    Article  CAS  Google Scholar 

  34. Yu JQ, Yuan JH, Zhang XJ, Liu JL, Fang XH. Chin Sci Bull, 2013, 58: 4045–4050

    Article  CAS  Google Scholar 

  35. Willig KI, Harke B, Medda R, Hell SW. Nat Meth, 2007, 4: 915–918

    Article  CAS  Google Scholar 

  36. Beater S, Holzmeister P, Lalkens B, Tinnefeld P. Opt Express, 2015, 23: 8630–8638

    Article  CAS  Google Scholar 

  37. Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW. Opt Express, 2010, 18: 1302–1309

    Article  CAS  Google Scholar 

  38. Du J, Deng S, Hou S, Qiao L, Chen J, Huang Q, Fan C, Cheng Y, Zhao Y. Chin Opt Lett, 2014, 12: 0411011

    Google Scholar 

  39. Donnert G, Eggeling C, Hell SW. Nat Meth, 2007, 4: 81–86

    Article  CAS  Google Scholar 

  40. Boudreau C, Wee TLE, Duh YRS, Couto MP, Ardakani KH, Brown CM. Sci Rep, 2016, 6: 30892

    Article  CAS  Google Scholar 

  41. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW. Nat Meth, 2011, 8: 571–573

    Article  CAS  Google Scholar 

  42. Wildanger D, Rittweger E, Kastrup L, Hell SW. Opt Express, 2008, 16: 9614–9621

    Article  Google Scholar 

  43. Chéreau R, Tønnesen J, Nägerl UV. Methods, 2015, 88: 57–66

    Article  Google Scholar 

  44. Gao F, Zhang Y, Yang H, Xiao Y, Wei T, Chang J. Optik - Int J Light Electron Optics, 2016, 127: 6610–6617

    Article  Google Scholar 

  45. Osseforth C, Moffitt JR, Schermelleh L, Michaelis J. Opt Express, 2014, 22: 7028–7039

    Article  CAS  Google Scholar 

  46. Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P. Opt Express, 2012, 20: 7362–7374

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21227804, 21390414, 61378062, 21505148), and the Natural Science Foundation of Shanghai (15ZR1448400, 14ZR1448000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Deng, S., Li, J. et al. Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization. Sci. China Chem. 60, 1305–1309 (2017). https://doi.org/10.1007/s11426-016-9028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9028-5

Keywords

Navigation