Skip to main content
Log in

The coupling effect of slow-rate mechanical motion on the confined etching process in electrochemical mechanical micromachining

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

By introducing the mechanical motion into the confined etchant layer technique (CELT), we have developed a promising ultra-precision machining method, termed as electrochemical mechanical micromachining (ECMM), for producing both regular and irregular three dimensional (3D) microstructures. It was found that there was a dramatic coupling effect between the confined etching process and the slow-rate mechanical motion because of the concentration distribution of electrogenerated etchant caused by the latter. In this article, the coupling effect was investigated systemically by comparing the etchant diffusion, etching depths and profiles in the non-confined and confined machining modes. A two-dimensional (2D) numerical simulation model was proposed to analyze the diffusion variations during the ECMM process, which is well verified by the machining experiments. The results showed that, in the confined machining mode, both the machining resolution and the perpendicularity tolerance of side faces were improved effectively. Furthermore, the theoretical modeling and numerical simulations were proved valuable to optimize the technical parameters of the ECMM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weingarten KJ, Rodwell MJW, Bloom DM. IEEE J Quantum Electron, 1988, 24: 198–220

    Article  Google Scholar 

  2. Curtice WR. IEEE Trans Microwave Theor Technol, 1980, 28: 448–456

    Article  Google Scholar 

  3. Yeh HJJ, Smith JS. IEEE Photon Technol Lett, 1994, 6: 706–708

    Article  Google Scholar 

  4. Köck A, Gornik E, Hauser M, Beinstingl W. Appl Phys Lett, 1990, 57: 2327–2329

    Article  Google Scholar 

  5. Haase MA, Qiu J, Depuydt JM, Cheng H. Appl Phys Lett, 1991, 59: 1272–1274

    Article  CAS  Google Scholar 

  6. Larson MC, Kondow M, Kitatani T, Nakahara K, Tamura K, Inoue H, Uomi K. IEEE Photon Technol Lett, 1998, 10: 188–190

    Article  Google Scholar 

  7. Nakayama K, Tanabe K, Atwater HA. Appl Phys Lett, 2008, 93: 121904

    Article  CAS  Google Scholar 

  8. Olson JM, Kibbler A, Gessert T. Sol Cells, 1987, 21: 450–451

    Article  Google Scholar 

  9. Konagai M, Sugimoto M, Takahashi K. J Cryst Growth, 1978, 45: 277–280

    Article  CAS  Google Scholar 

  10. Venkatesan T, Wilkens B, Lee YH, Warren M, Olbright G, Gibbs HM, Peyghambarian N, Smith JS, Yariv A. Appl Phys Lett, 1986, 48: 145–147

    Article  CAS  Google Scholar 

  11. Woodward TK, Chirovsky LMF, Lentine AL, D’Asaro LA, Laskowski EJ, Focht M, Guth G, Pei SS, Ren F, Przybylek GJ, Smith LE, Leibenguth RE, Asom MT, Kopf RF, Kuo JM, Feuer MD. IEEE Photon Technol Lett, 1992, 4: 614–617

    Article  Google Scholar 

  12. Smith AV, Do BT. Appl Opt, 2008, 47: 4812–4832

    Article  PubMed  Google Scholar 

  13. Samant AN, Dahotre NB. J Eur Ceram Soc, 2009, 29: 969–993

    Article  CAS  Google Scholar 

  14. Davis KM, Miura K, Sugimoto N, Hirao K. Opt Lett, 1996, 21: 1729–1731

    Article  CAS  PubMed  Google Scholar 

  15. Giannuzzi LA, Stevie FA. Micron, 1999, 30: 197–204

    Article  Google Scholar 

  16. Reyntjens S, Puers R. J Micromech Microeng, 2001, 11: 287–300

    Article  CAS  Google Scholar 

  17. Utke I, Hoffmann P, Melngailis J. J Vac Sci Technol B, 2008, 26: 1197–1276

    Article  CAS  Google Scholar 

  18. Deng J, Lee T. Ceram Int, 2000, 26: 825–830

    Article  Google Scholar 

  19. Ekmekci B, Sayar A, Öpöz TT, Erden A. J Micromech Microeng, 2009, 19: 105030

    Article  CAS  Google Scholar 

  20. Dornfeld D, Min S, Takeuchi Y. CIRP Ann, 2006, 55: 745–768

    Article  Google Scholar 

  21. Yan Y, Hu Z, Zhao X, Sun T, Dong S, Li X. Small, 2010, 6: 724–728

    Article  CAS  PubMed  Google Scholar 

  22. Yan Y, Xue B, Hu Z, Wu D. Int J Adv Manuf Technol, 2016, 84: 2037–2046

    Article  Google Scholar 

  23. Geng Y, Yan Y, Brousseau EB, Yu B, Qu S, Hu Z, Zhao X. Precision Eng, 2016, 46: 288–300

    Article  Google Scholar 

  24. Yan Y, Zhang J, Xu P, Miao P. RSC Adv, 2017, 7: 11969–11978

    Article  CAS  Google Scholar 

  25. Yan Y, Sun T, Liang Y, Dong S. Int J Mach Tools Manu, 2007, 47: 1651–1659

    Article  Google Scholar 

  26. Yan Y, Geng Y, Hu Z. Int J Mach Tools Manu, 2015, 99: 1–18

    Article  Google Scholar 

  27. He Y, Yan Y, Geng Y, Brousseau E. Appl Surf Sci, 2018, 427: 1076–1083

    Article  CAS  Google Scholar 

  28. Zantye PB, Kumar A, Sikder AK. Mater Sci Eng-R-Rep, 2004, 45: 89–220

    Article  CAS  Google Scholar 

  29. Moon Y. Advances in Chemical Mechanical Planarization (CMP). Cambridge: Woodhead Publishing, 2016. 3–26

    Book  Google Scholar 

  30. Zhan D, Han L, Zhang J, He Q, Tian ZW, Tian ZQ. Chem Soc Rev, 2017, 46: 1526–1544

    Article  CAS  PubMed  Google Scholar 

  31. Wilson JF. Practice and Theory of Electrochemical Machining. New York: John Wiley & Sons. Inc., 1971

    Google Scholar 

  32. Bhattacharyya B, Mitra S, Boro AK. Robot Comp, 2002, 18: 283–289

    Google Scholar 

  33. Wang FF, Wang W, He X, Han L, Zhou JZ, Tian ZQ, Tian ZW, Zhan D. Sci China Chem, 2017, 60: 649–655

    Article  CAS  Google Scholar 

  34. Zhan D, Han L, Zhang J, Shi K, Zhou JZ, Tian ZW, Tian ZQ. Acc Chem Res, 2016, 49: 2596–2604

    Article  CAS  PubMed  Google Scholar 

  35. Han L, He Q, Zhao X, Cao Y, Hu Z, Yan Y, Tian Z, Zhan D. Sci Sin Chim, 2017, 47: 594–602

    Article  Google Scholar 

  36. Yuan Y, Han L, Huang D, Su JJ, Tian ZQ, Tian ZW, Zhan D. Electrochim Acta, 2015, 183: 3–7

    Article  CAS  Google Scholar 

  37. Yuan Y, Han L, Zhang J, Jia J, Zhao X, Cao Y, Hu Z, Yan Y, Dong S, Tian ZQ, Tian ZW, Zhan D. Faraday Disc, 2013, 164: 189–197

    Article  CAS  Google Scholar 

  38. Huang P, Lai J, Han L, Yang FZ, Jiang LM, Su JJ, Tian ZW, Tian ZQ, Zhan D. Sci China Chem, 2016, 59: 1525–1528

    Article  CAS  Google Scholar 

  39. Cao Y, Jia Y, Yan Y, Han L, Zhao X, Hu Z, Zhan D. Int J Nanomanuf, 2017, In press

    Google Scholar 

  40. Zhang J, Jia J, Han L, Yuan Y, Tian ZQ, Tian ZW, Zhan D. J Phys Chem C, 2014, 118: 18604–18611

    Article  CAS  Google Scholar 

  41. Tian Z, Fen Z, Tian Z, Zhuo X, Mu J, Li C, Lin H, Ren B, Xie Z, Hu W. Faraday Disc, 1992, 94: 37–44

    Article  CAS  Google Scholar 

  42. Zhang L, Ma X, Zhuang J, Qiu C, Du C, Tang J, Tian Z. Adv Mater, 2007, 19: 3912–3918

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21573054, 21327002, 91323303, 21621091), the Joint Funds Key Project of the National Natural Science Foundation of China (U1537214), the State Key Program of National Natural Science of China (51535003), Self-Planned Task (SKLRS201606B) of State Key Laboratory of Robotics and System (HIT) and the Open Project of the State Key Laboratory for Manufacturing Systems Engineering (Xi’an Jiaotong University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzhi Cao or Dongping Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Jia, Y., Cao, Y. et al. The coupling effect of slow-rate mechanical motion on the confined etching process in electrochemical mechanical micromachining. Sci. China Chem. 61, 715–724 (2018). https://doi.org/10.1007/s11426-017-9195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9195-3

Keywords

Navigation