Skip to main content
Log in

Applications of synchrotron-based X-ray techniques in environmental science

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Synchrotron-based X-ray techniques have been widely applied to the fields of environmental science due to their element-specific and nondestructive properties and unique spectral and spatial resolution advantages. The techniques are capable of in situ investigating chemical speciation, microstructure and mapping of elements in question at the molecular or nanometer scale, and thus provide direct evidence for reaction mechanisms for various environmental processes. In this contribution, the applications of three types of the techniques commonly used in the fields of environmental research are reviewed, namely X-ray absorption spectroscopy (XAS), X-ray fluorescence (XRF) spectroscopy and scanning transmission X-ray microscopy (STXM). In particular, the recent advances of the techniques in China are elaborated, and a selection of the applied examples are provided in the field of environmental science. Finally, the perspectives of synchrotron-based X-ray techniques are discussed. With their great progress and wide application, the techniques have revolutionized our understanding of significant geo- and bio-chemical processes. It is anticipatable that synchrotron-based X-ray techniques will continue to play a significant role in the fields and significant advances will be obtained in decades ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sparks DL. Environmental Soil Chemistry. 2nd Ed. San Diego, CA: Academic Press, 2003

    Google Scholar 

  2. Sutton SR, Rivers ML, Bajt S, Jones K, Smith JV. Synchrotron X-ray fluorescence microprobe: A microanalytical instrument for trace element studies in geochemistry, cosmochemistry, and the soil and environmental sciences. Nucl Instrum Methods Phys Res A, 1994, 347:412–416

    Article  CAS  Google Scholar 

  3. Schulze DG, Bertsch PM. Synchrotron X-ray techniques in soil, plant, and environmental research. Adv Agron, 1995, 55:1–66

    Article  CAS  Google Scholar 

  4. Bertsch P, Hunter DB. Applications of synchrotron-based X-ray microprobes. Chem Rev, 2001, 101:1809–1842

    Article  CAS  Google Scholar 

  5. Thieme J, Sedlmair J, Gleber SC, Prietzel J, Coates J, Eusterhues K, Abbt-Braun G, Salome M. X-ray spectromicroscopy in soil and environmental sciences. J Synchrotron Rad, 2010, 17:149–157

    Article  CAS  Google Scholar 

  6. Lombi E, Susini J. Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil, 2009, 320:1–35

    Article  CAS  Google Scholar 

  7. Teo BK. EXAFS: Basic principles and data-analysis. New York: Springer, 1986

    Google Scholar 

  8. Kelly SD, Hesterberg D, Ravel B. Analysis of soils and minerals using X-ray absorption spectroscopy. In: Ulery AL, Dress R, Eds. Methods of soil analysis. Part 5. Mineralogical methods. Madison, WI: Soil Sci Soc Am, 2008. 387–464

    Google Scholar 

  9. Yoon TH, Benzerara K, Ahn S, Luthy RG, Brown GE Jr. Nanometerscale chemical heterogeneities of black carbon materials and their impacts on PCB sorption properties: soft X-ray spectromicroscopy study. Environ Sci Technol, 2006, 40:5923–5929

    Article  CAS  Google Scholar 

  10. Plaschke M, Rothe J, Atmaier M, Denecke MA, Fanghänel T. Near edge X-ray absorption fine structure (NEXAFS) of model compounds for the humic acid/actinide ion interaction. J Electron Spectrosc Relat Phenom, 2005, 148:151–157

    Article  CAS  Google Scholar 

  11. Myneni SCB. Soft X-ray spectroscopy and spectromicroscopy studies of organic molecules in the environment. In: Fenter P, Rivers M, Sturchio N, Sutton S, Eds. Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Rev Mineral Geochem, 2002, 49:485–579

  12. Hayes KF, Roe AL, Brown GE Jr, Hodgson KO, Leckie JO, Parks GA. In situ X-ray absorption study of surface complexes: selenium oxyanions on a-FeOOH. Science, 1987, 238:783–786

    Article  CAS  Google Scholar 

  13. Brown GE Jr, Parks GA. Synchrotron-based X-ray absorption studies of cation environments in earth materials. Rev Geophys, 1989, 27:519–533

    Article  Google Scholar 

  14. Chisholm-Brause CJ, O’Day PA, Brown GE Jr, Parks GA. Evidence for multinuclear metal-ion complexes at solid/water interfaces from X-ray absorption spectroscopy. Nature, 1990, 348:528–531

    Article  CAS  Google Scholar 

  15. Arai Y, Lanzirotti A, Sutton SR, Newville M, Dyer J, Sparks DL. Spatial and temporal variability of arsenic solid-state speciation in historically lead arsenate contaminated soils. Environ Sci Technol, 2006, 40:673–679

    Article  CAS  Google Scholar 

  16. Landrot G, Ginder-Vogel M, Sparks DL. Kinetics of chromium(III) oxidation by manganese(IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS). Environ Sci Technol, 2010, 44:143–149

    Article  CAS  Google Scholar 

  17. Ginder-Vogel M, Landrot G, Fischel JS, Sparks DL. Quantification of rapid environmental redox processes with quick-scanning X-ray absorption spectroscopy (Q-XAS). Proc Natl Acad Sci, 2009, 106:16124–16128

    Article  CAS  Google Scholar 

  18. Manceau A, Charlet L. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J Colloid Interface Sci, 1992, 148:425–442

    Article  CAS  Google Scholar 

  19. Manceau A, Boisset M-C, Sarret G, Hazemann J-L, Mench M, Cambier P, Prost R. Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ Sci Technol, 1996, 30:1540–1552

    Article  CAS  Google Scholar 

  20. Manceau A, Tamura N, Marcus MA, MacDowell AA, Celestre RS, Sublett RE, Sposito G, Padmore HA. Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scales of resolution. Am Mineral, 2002, 87:1494–1499

    CAS  Google Scholar 

  21. O’Day PA, Rehr JJ, Zabinsky SI, Brown GE Jr. Extended X-ray absorption fine structure (EXAFS) analysis of disorder and multiple-scattering in complex crystalline solids. J Am Chem Soc, 1994, 116:2938–2949

    Article  Google Scholar 

  22. Díaz-Moreno S, Muñoz-Páez A, MartÍnez JM, Pappalardo RR, Marcos ES. EXAFS investigation of inner- and outer-sphere chloroaquo complexes of Cr3+ in aqueous solutions. J Am Chem Soc, 1996, 118:12654–12664

    Article  Google Scholar 

  23. Fendorf S, Eick MJ, Grossl P, Sparks DL. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol, 1997, 31:315–320

    Article  CAS  Google Scholar 

  24. Waychunas GA, Rehr JJ, Fuller CC, Davis JA. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis. Geochim Cosmochim Acta, 2003, 67:1031–1043

    Article  CAS  Google Scholar 

  25. Randall SR, Sherman DM, Ragnarsdottir KV, Collins CR. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochim Cosmochim Acta, 1999, 63:2971–2987

    Article  CAS  Google Scholar 

  26. Luo L, Zhang SZ, Shan XQ, Jiang W, Zhu YG, Liu T, Xie YN, McLaren RG. Arsenate sorption on two Chinese red soils evaluated using macroscopic measurements and EXAFS spectroscopy. Environ Toxicol Chem, 2006, 25:3118–3124

    Article  CAS  Google Scholar 

  27. Waychunas GA, Fuller CC, Davis JA. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: I. EXAFS analysis. Geochim Cosmochim Acta, 2002, 66:1119–1137

    Article  CAS  Google Scholar 

  28. Waychunas GA, Trainor TP, Eng P, Catalano JG, Brown GE Jr, Davis JA, Rogers J, Bargar JR. Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate on hematite (0001) and (10–12). Anal Bioanal Chem, 2005, 383:12–27

    Article  CAS  Google Scholar 

  29. Zhou SW, Ma YB, Xu MG, Luo L, Zhang SZ. Application of X-ray absorption fine structure spectroscopy to soil science. Acta Pedologica Sinica (in Chinese), 2008, 45:155–164

    Google Scholar 

  30. Karlsson T, Persson P, Skyllberg U. Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter. Environ Sci Technol, 2005, 39:3048–3055

    Article  CAS  Google Scholar 

  31. Scheckel KG, Impellitteri CA, Ryan JA, Mcevoy T. Assessment of a sequential extraction procedure for perturbed lead-contaminated samples with and without phosphorus amendments. Environ Sci Technol, 2003, 37:1892–1898

    Article  CAS  Google Scholar 

  32. Toner B, Manceau A, Marcus MA, Millet DB, Sposito G. Zinc sorption by a bacterial biofilm. Environ Sci Technol, 2005, 39:8288–8294

    Article  CAS  Google Scholar 

  33. Chen XC, Shi JY, Chen YX, Xu XH, Chen LT, Wang H, Hu TD. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Appl Microbiol Biot, 2007, 74:881–889

    Article  CAS  Google Scholar 

  34. Riddle SG, Tran HH, Dewitt JG, Andrews JC. Field, Laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths. Environ Sci Technol, 2002, 36:1965–1970

    Article  CAS  Google Scholar 

  35. Han F, Shan X-Q, Zhang J, Xie YN, Pei ZG, Zhang SZ, Zhu Y-G, Wen B. Organic acids promote the uptake of lanthanum by barley roots. New Phytol, 2005, 165:481–492

    Article  CAS  Google Scholar 

  36. Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, MEharg AA, Charnock JM, Smith FA. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol, 2006, 40:5730–5736

    Article  CAS  Google Scholar 

  37. Arai T, Ikemoto T, Hokura A, Terada Y, Kunito T, Tanabe S, Nakai I. Chemical forms of mercury and cadmium accumulated in marine mammals and seabirds as determined by XAFS analysis. Environ Sci Technol, 2004, 38:6468–6474

    Article  CAS  Google Scholar 

  38. Chan J, Merrifield ME, Soldatov AV, Stillman MJ. 2005. XAFS spectral analysis of the cadmium coordination geometry in cadmium thiolate clusters in metallothionein. Inorg Chem, 2005, 44:4923–4933

    Article  CAS  Google Scholar 

  39. Prietzel J, Thieme J, Eusterhues K, Eichert D. Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES, μ-XANES). Eur J Soil Sci, 2007, 58:1027–1041

    Article  CAS  Google Scholar 

  40. Pickering IJ, Prince RC, Salt DE, George GN. Quantitative, chemically specific imaging of selenium transformation in plants. Proc Natl Acad Sci, 2000, 97:10717–10722

    Article  CAS  Google Scholar 

  41. Duff MC, Hunter DB, Triay IR, Bertsch PM, Reed DT, Sutton SR, Shea-McCarthy G, Kitten J, Eng P, Chipera SJ, Vaniman DT. Mineral associations and average oxidation states of sorbed Pu on tuff. Environ Sci Technol, 1999, 33:2163–2169

    Article  CAS  Google Scholar 

  42. Isaure M-P, Fayard B, Sarret G, Pairis S, Bourguignon J. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta B, 2006, 61:1242–1252

    Article  Google Scholar 

  43. Isaure M-P, Fraysse A, Devès G, Le Lay P, Fayard B, Susini J, Bourguignon J, Ortega R. Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements. Biochimie, 2006, 88:1583–1590

    Article  CAS  Google Scholar 

  44. Lombi E, Schekel KG, Pallon J, Carey AM, Zhu Y-G, Meharg AA. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol, 2009, 184:193–201

    Article  CAS  Google Scholar 

  45. Hunter RC, Hitchcock AP, Dynes JJ, Obst M, Beveridge TJ. Mapping the speciation of iron in Pseudomonas aeruginosa biofilms using scanning transmission X-ray microscopy. Environ Sci Technol, 2008, 42:8766–8772

    Article  CAS  Google Scholar 

  46. Myneni SCB, Brown JT, Martinez GA, Meyer-Ilse W. Imaging of humic substance macromolecular structures in water and soils. Science, 1999, 286:1335–1337

    Article  CAS  Google Scholar 

  47. Sleighter RL, Hatcher PG. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J Mass Spectrom, 2007, 42:559–574

    Article  CAS  Google Scholar 

  48. Luo L, Zhang SZ, Ma YB, Chritie P, Huang HL. Facilitating effects of metal cations on phenanthrene sorption in soils. Environ Sci Technol, 2008, 42:2414–2419

    Article  CAS  Google Scholar 

  49. Kinyangi J, Solomon D, Liang BQ, Lerotic M, Wirick S, Lehmann J. Nanoscale biogeocomplexity of the organomineral assemblage in soil: application of STXM microscopy and C 1s-NEXAFS spectroscopy. Soil Sci Soc Am J, 2006, 70:1708–1718

    Article  CAS  Google Scholar 

  50. Solomon D, Lehmann J, Kinyangi J, Liang BQ, Schäfer T. Carbon K-edge NEXAFS and FTIR-ATR spectroscopic investigation of organic carbon speciation in soils. Soil Sci Soc Am J, 2005, 69:107–119

    CAS  Google Scholar 

  51. Wan J, Tyliszczak T, Tokunaga TK. Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: Applications of STXM and NEXAFS spectroscopy. Geochim Cosmochim Acta, 2007, 71:5439–5449

    Article  CAS  Google Scholar 

  52. Christl I, Kretzschmar R. C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation. Environ Sci Technol, 2007, 41:1915–1920

    Article  CAS  Google Scholar 

  53. Hopkins RJ, Tivanski AV, Marten BD, Gilles MK. Chemical bonding and structure of black carbon reference materials and individual carbonaceous atmospheric aerosols. J Aerosol Sci, 2007, 38:573–591

    Article  CAS  Google Scholar 

  54. Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex. Science, 2004, 304:1634–1637

    Article  CAS  Google Scholar 

  55. Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C. Spatial complexity of soil organic matter forms at nanometre scales. Nature GeoSci, 2008, 1:238–242

    Article  CAS  Google Scholar 

  56. Schumacher M, Christl I, Sheinost AC, Jacobsen C, Kretzschmar R. Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy. Environ Sci Technol, 2005, 39:9094–9100

    Article  CAS  Google Scholar 

  57. Liang BQ, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizão FJ, Engelhard MH, Neves EG, Wirick S. Stability of biomassderived black carbon in soils. Geochim Coschim Acta, 2008, 72:6069–6078

    Article  CAS  Google Scholar 

  58. Lawrence JR, Swerhone GDW, Leppard GG, Araki T, Zhang X, West MM, Hitchcock AP. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol, 2003, 69:5543–5554

    Article  CAS  Google Scholar 

  59. Beauchemin S, Hesterberg D, Chou J, Beauchemin M, Simard RR, Sayers DE. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. J Environ Qual, 2003, 32:1809–1819

    Article  CAS  Google Scholar 

  60. Toor GS, Condron LM, Di HJ, Cameron KC, Cade-Menun BJ. Characterization of organic phosphorus in leachate from a grassland soil. Soil Biol Biochem, 2003, 35:1317–1323

    Article  CAS  Google Scholar 

  61. Sato S, Solomon D, Hyland C, Ketterings QM, Lehmann J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ Sci Technol, 2005, 39:7485–7491

    Article  CAS  Google Scholar 

  62. Zhuang S-Y, Xu M-J, Hu Z-Y. Determination of forest soil organic nitrogen determination using technique of X-ray absorption near-edge structure. J Forest Res, 2006, 17:189–192

    Article  CAS  Google Scholar 

  63. Vairavamurthy A, Wang S. Organic nitrogen in geomacromolecules: insights on speciation and transformation with K-edge XANES spectroscopy. Environ Sci Technol, 2002, 36:3050–3056

    Article  CAS  Google Scholar 

  64. Pan G, Qin YW, Li XL, Hu TD, Wu ZY, Xie YN. EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces I. Irreversible adsorption of zinc onto manganite (γ-MnOOH). J Colloid Interface Sci, 2004, 271:28–34

    Article  CAS  Google Scholar 

  65. Li XL, Pan G, Qin YW, Hu TD, Wu ZY, Xie YN. EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces. II. Reversible adsorption of zinc on delta-MnO2. J Colloid Interface Sci, 2004, 271:35–40

    Article  CAS  Google Scholar 

  66. He GZ, Pan G, Zhang MY, Wu ZY. Quantitative XANES studies on metastable equilibrium adsorption of arsenate on TiO2 surfaces. J Phys Chem C, 2009, 113:17076–17081

    Article  CAS  Google Scholar 

  67. Jing CY, Liu SQ, Patel M, Meng XG. Arsenic leachability in water treatment adsorbents. Environ Sci Technol, 2005, 39:5481–5487

    Article  CAS  Google Scholar 

  68. Liu SQ, Jing CY, Meng XG. Arsenic re-mobilization in water treatment adsorbents under reducing conditions: Part II. XAS and modeling study. Sci Total Environ, 2008, 392:137–144

    Article  CAS  Google Scholar 

  69. Huang Z-C, Chen T-B, Lei M, Liu Y-R, Hu, TD. Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and -hypertolerant Plants. Environ Sci Technol, 2008, 42:5106–5111

    Article  CAS  Google Scholar 

  70. Chen TB, Huang ZC, Huang YY, Xie H, Liao XY. Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation (in Chinese). Chin Sci Bull, 2003, 48:1163–1168

    Google Scholar 

  71. Huang ZC, Chen TB, Lei M, Hu TD, Huang QF. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator. Sci China Ser C, 2004, 47:116–121

    Google Scholar 

  72. Chen XP, Zhu YG, Hu MN, Wang XJ, Gult AG, Charnock JM, Polya DA. Characteristics of Fe and As in the rice rhizosphere with different fertilizer amendments. Environ Chem (in Chinese), 2008, 27:231–234

    CAS  Google Scholar 

  73. Williams PN, Lombi E, Sun G-X, Schekel KG, Zhu Y-G, Feng XB, Zhu JM, Carey A-M, Adomako E, Lawgali Y, Deacon C, Meharg AA. Selenium characterization in the global rice supply chain. Environ Sci Technol, 2009, 43:6024–6030

    Article  CAS  Google Scholar 

  74. Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YX, Hu TD. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil, 2008, 302:163–174

    Article  CAS  Google Scholar 

  75. Xu XH, Shi JY, Chen XC, Chen YX, Hu TD. Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Pant Soil, 2009, 318:197–204

    Article  CAS  Google Scholar 

  76. Ding SM, Liang T, Yan JC, Zhang ZL, Huang ZC, Xie YN. Fractionations of rare earth elements in plants and their conceptive model. Sci China Ser C, 2007, 50:47–55

    Article  CAS  Google Scholar 

  77. Jiang WJ, Li ZJ, Zhang ZY, Zhang J, Liu T, Yu M, Zhou YL, Chai ZF. Distribution in internodal cells of chara and the bonding states with the cell wall of lanthanum. Acta Chimica Sinica (in Chinese), 2008, 66:1740–1744

    CAS  Google Scholar 

  78. Ren QG, Hua Y, Shen H, Zhong L, Jin CZ, Mi Y, Yao HY, Xie NY, Wei SQ, Zhou LW. Cytochemical behavior of rare earth ions in Euglena gracilis studied by XAFS. J Radioanal Nucl Chem, 2007, 359–362

  79. Wang YS, Li AG, Zhang YX, Xie YN, Li DL, Li Y, Zhang GL. Speciation of iron in atmospheric particulate matter by EXAFS. Chin Sci Bull, 2006, 51:2275–2280

    Article  CAS  Google Scholar 

  80. Bao LM, Zhang YX, Li XL, Li Y, Liu W, Zhao YD, Ma CY, Han Y. Speciation an of biogeochemically relevant reference organic compounds. Soil Sci d distribution of sulfur in size-fractionated particulate matters in industrial district of Shanghai. China Environ Sci (in Chinese), 2009, 29(3):231–236

    CAS  Google Scholar 

  81. Zhang YX, Cao T, Iida A, Huang WX, Cao QC, Lou YX, Zhang GL, Li Y. Study of moss as air pollution monitor by SRXRF technique. Chin Sci Bull, 2009, 54:2987–2990

    Article  CAS  Google Scholar 

  82. Sparks DL. Elucidating the fundamental chemistry of soils: Past and recent achievements and future frontiers. Geoderma, 2001, 100:303–319

    Article  CAS  Google Scholar 

  83. Braun A, Huggins FE, Shah N, Chen Y, Wirick S, Mun SB, Jacobsen C, Huffman GP. Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies-A comparative study on diesel soot with EELS and NEXAFS. Carbon, 2005, 43:117–124

    Article  CAS  Google Scholar 

  84. Solomon D, Lehmann J, Kinyangi J, Liang BQ, Dathe L, Hanley K. Carbon (1s) NEXAFS spectroscopy Soc Am J, 2008, 73:1817–1830

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuZhen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Zhang, S. Applications of synchrotron-based X-ray techniques in environmental science. Sci. China Chem. 53, 2529–2538 (2010). https://doi.org/10.1007/s11426-010-4085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4085-x

Keywords

Navigation