Skip to main content

Advertisement

Log in

Recent advances in radical-mediated fluorination through C–H and C–C bond cleavage

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The C–H and C–C bonds are abundant in organic compounds, yet generally inert in chemical transformations. Therefore, direct functionalization of inert chemical bonds remains challenging. The fluorine-containing compounds are of special interest for their uses in medicinal chemistry. Direct fluorination of C–H and C–C bonds undoubtedly represents one of the most ideal and attractive approaches to incorporate fluorine atom into complex molecules. Herein, we summarize the recent advances in radical-mediated C–H and C–C bond fluorination. Three types of transformations are discussed: (1) direct C–H abstraction/fluorination of alkanes; (2) decarboxylative fluorination of alkyl carboxylic acids; (3) ring-opening fluorination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    Article  Google Scholar 

  2. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  CAS  Google Scholar 

  3. Jeschke P. ChemBioChem, 2004, 5: 570–589

    Article  CAS  Google Scholar 

  4. Kannan AG, Choudhury NR, Dutta N. ACS Appl Mater Interfaces, 2009, 1: 336–347

    Article  CAS  Google Scholar 

  5. Goss KU, Bronner G. J Phys Chem A, 2006, 110: 9518–9522

    Article  CAS  Google Scholar 

  6. Hung MH, Farnham WB, Feiring AE, Rosen S. Fluoropolymers 1: Synthesis. New York: Plenum Publishing Co., 1999

    Google Scholar 

  7. Dong C, Huang F, Deng H, Schaffrath C, Spencer JB, O’Hagan D, Naismith JH. Nature, 2004, 427: 561–565

    Article  CAS  Google Scholar 

  8. Chambers RD, Kenwright AM, Parsons M, Sandford G, Moilliet JS. J Chem Soc Perkin Trans 1, 2002, 2190–2197

    Google Scholar 

  9. Patrick TB, Khazaeli S, Nadji S, Hering-Smith K, Reif D. J Org Chem, 1993, 58: 705–708

    Article  CAS  Google Scholar 

  10. Stavber S, Zupan M. J Org Chem, 1991, 56: 7347–7350

    Article  CAS  Google Scholar 

  11. Kollonitsch J, Barash L, Doldouras GA. J Am Chem Soc, 1970, 92: 7494–7495

    Article  CAS  Google Scholar 

  12. Zhu RY, Tanaka K, Li GC, He J, Fu HY, Li SH, Yu JQ. J Am Chem Soc, 2015, 137: 7067–7070

    Article  CAS  Google Scholar 

  13. Zhang Q, Yin XS, Chen K, Zhang SQ, Shi BF. J Am Chem Soc, 2015, 137: 8219–8226

    Article  CAS  Google Scholar 

  14. Miao J, Yang K, Kurek M, Ge H. Org Lett, 2015, 17: 3738–3741

    Article  CAS  Google Scholar 

  15. Sibi MP, Landais Y. Angew Chem Int Ed, 2013, 52: 3570–3572

    Article  CAS  Google Scholar 

  16. Petrone DA, Ye J, Lautens M. Chem Rev, 2016, 116: 8003–8104

    Article  CAS  Google Scholar 

  17. Ma JA, Li S. Org Chem Front, 2014, 1: 712–715

    Article  CAS  Google Scholar 

  18. Chatalova-Sazepin C, Hemelaere R, Paquin JF, Sammis GM. Synthesis, 2015, 47: 2554–2569

    Article  CAS  Google Scholar 

  19. Liu W, Huang X, Cheng MJ, Nielsen RJ, Goddard WA, Groves JT. Science, 2012, 337: 1322–1325

    Article  CAS  Google Scholar 

  20. Huang X, Liu W, Ren H, Neelamegam R, Hooker JM, Groves JT. J Am Chem Soc, 2014, 136: 6842–6845

    Article  CAS  Google Scholar 

  21. Bloom S, Pitts CR, Miller DC, Haselton N, Holl MG, Urheim E, Lectka T. Angew Chem Int Ed, 2012, 51: 10580–10583

    Article  CAS  Google Scholar 

  22. Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T. J Am Chem Soc, 2014, 136: 9780–9791

    Article  CAS  Google Scholar 

  23. Amaoka Y, Nagatomo M, Inoue M. Org Lett, 2013, 15: 2160–2163

    Article  CAS  Google Scholar 

  24. Xia JB, Zhu C, Chen C. J Am Chem Soc, 2013, 135: 17494–17500

    Article  CAS  Google Scholar 

  25. Xia JB, Zhu C, Chen C. Chem Commun, 2014, 50: 11701–11704

    Article  CAS  Google Scholar 

  26. Cantillo D, de Frutos O, Rincón JA, Mateos C, Kappe CO. J Org Chem, 2014, 79: 8486–8490

    Article  CAS  Google Scholar 

  27. Kee CW, Chin KF, Wong MW, Tan CH. Chem Commun, 2014, 50: 8211–8214

    Article  CAS  Google Scholar 

  28. Halperin SD, Fan H, Chang S, Martin RE, Britton R. Angew Chem Int Ed, 2014, 53: 4690–4693

    Article  CAS  Google Scholar 

  29. Nodwell MB, Bagai A, Halperin SD, Martin RE, Knust H, Britton R. Chem Commun, 2015, 51: 11783–11786

    Article  CAS  Google Scholar 

  30. Halperin SD, Kwon D, Holmes M, Regalado EL, Campeau LC, Di Rocco DA, Britton R. Org Lett, 2015, 17: 5200–5203

    Article  CAS  Google Scholar 

  31. Bloom S, Sharber SA, Holl MG, Knippel JL, Lectka T. J Org Chem, 2013, 78: 11082–11086

    Article  CAS  Google Scholar 

  32. Pitts CR, Ling B, Woltornist R, Liu R, Lectka T. J Org Chem, 2014, 79: 8895–8899

    Article  CAS  Google Scholar 

  33. West JG, Bedell TA, Sorensen EJ. Angew Chem Int Ed, 2016, 55: 8923–8927

    Article  CAS  Google Scholar 

  34. Xu P, Guo S, Wang L, Tang P. Angew Chem Int Ed, 2014, 53: 5955–5958

    Article  CAS  Google Scholar 

  35. Zhang X, Guo S, Tang P. Org Chem Front, 2015, 2: 806–810

    Article  CAS  Google Scholar 

  36. Xia JB, Ma Y, Chen C. Org Chem Front, 2014, 1: 468–472

    Article  CAS  Google Scholar 

  37. Bloom S, Knippel JL, Lectka T. Chem Sci, 2014, 5: 1175–1178

    Article  CAS  Google Scholar 

  38. Bloom S, Mc Cann M, Lectka T. Org Lett, 2014, 16: 6338–6341

    Article  CAS  Google Scholar 

  39. Rueda-Becerril M, Chatalova Sazepin C, Leung JCT, Okbinoglu T, Kennepohl P, Paquin JF, Sammis GM. J Am Chem Soc, 2012, 134: 4026–4029

    Article  CAS  Google Scholar 

  40. Yin F, Wang Z, Li Z, Li C. J Am Chem Soc, 2012, 134: 10401–10404

    Article  CAS  Google Scholar 

  41. Mizuta S, Stenhagen ISR, O’Duill M, Wolstenhulme J, Kirjavainen AK, Forsback SJ, Tredwell M, Sandford G, Moore PR, Huiban M, Luthra SK, Passchier J, Solin O, Gouverneur V. Org Lett, 2013, 15: 2648–2651

    Article  CAS  Google Scholar 

  42. Phae-nok S, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. Eur J Org Chem, 2015, 2015: 2879–2888

    Article  CAS  Google Scholar 

  43. Leung JCT, Chatalova-Sazepin C, West JG, Rueda-Becerril M, Paquin JF, Sammis GM. Angew Chem Int Ed, 2012, 51: 10804–10807

    Article  CAS  Google Scholar 

  44. Rueda-Becerril M, Mahé O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin JF. J Am Chem Soc, 2014, 136: 2637–2641

    Article  CAS  Google Scholar 

  45. Leung JCT, Sammis GM. Eur J Org Chem, 2015, 2015: 2197–2204

    Article  CAS  Google Scholar 

  46. Ventre S, Petronijevic FR, MacMillan DWC. J Am Chem Soc, 2015, 137: 5654–5657

    Article  CAS  Google Scholar 

  47. Wu X, Meng C, Yuan X, Jia X, Qian X, Ye J. Chem Commun, 2015, 51: 11864–11867

    Article  CAS  Google Scholar 

  48. Huang X, Liu W, Hooker JM, Groves JT. Angew Chem Int Ed, 2015, 54: 5241–5245

    Article  CAS  Google Scholar 

  49. Zhang QW, Brusoe AT, Mascitti V, Hesp KD, Blakemore DC, Kohrt JT, Hartwig JF. Angew Chem Int Ed, 2016, 55: 9758–9762

    Article  CAS  Google Scholar 

  50. Zhao H, Fan X, Yu J, Zhu C. J Am Chem Soc, 2015, 137: 3490–3493

    Article  CAS  Google Scholar 

  51. Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem Lett, 2015, 44: 821–823

    Article  CAS  Google Scholar 

  52. Ren S, Feng C, Loh TP. Org Biomol Chem, 2015, 13: 5105–5109

    Article  CAS  Google Scholar 

  53. Bloom S, Bume DD, Pitts CR, Lectka T. Chem Eur J, 2015, 21: 8060–8063

    Article  CAS  Google Scholar 

  54. Pitts CR, Bloom MS, Bume DD, Zhang QA, Lectka T. Chem Sci, 2015, 6: 5225–5229

    Article  CAS  Google Scholar 

  55. Pitts CR, Ling B, Snyder JA, Bragg AE, Lectka T. J Am Chem Soc, 2016, 138: 6598–6609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Soochow University, the National Natural Science Foundation of China (21402134), the Natural Science Foundation of Jiangsu Province (BK20140306), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Zhu, C. Recent advances in radical-mediated fluorination through C–H and C–C bond cleavage. Sci. China Chem. 60, 214–222 (2017). https://doi.org/10.1007/s11426-016-0399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0399-5

Keywords

Navigation