Skip to main content
Log in

Electrophilic and Oxidative Fluorination of Heterocyclic Compounds: Contribution to Green Chemistry

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Literature data on electrophilic and oxidative fluorination of heterocyclic compounds have been analyzed in terms of the “green” chemistry principles. Particular attention has been paid to reaction mechanisms and selectivity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Scheme
Scheme
Scheme
Fig. 4.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 5.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 6.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Mei, H., Han, J., Fustero, S., Medio-Simon, M., Sedgwick, D.M., Santi, C., Ruzziconi, R., and Solo­shonok, V.A., Chem. Eur. J., 2019, vol. 25, p. 11797. https://doi.org/10.1002/chem.201901840

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Aceña, J.L., Soloshonok, V.F., Izawa, K., and Liu, H., Chem. Rev., 2016, vol. 116, p. 422. https://doi.org/10.1021/acs.chemrev.5b00392

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J., Sánchez-Roselló, M., Aceña, J.L., del Pozo, C., Sorochinsky, A.E., Fustero, S., Solosho­nok, V.A., and Liu, H., Chem. Rev., 2014, vol. 114, p. 2432. https://doi.org/10.1021/cr4002879

    Article  CAS  PubMed  Google Scholar 

  4. Dhiman, P., Arora, N., Thanikachalam, P.V., and Monga, V., Bioorg. Chem., 2019, vol. 92, article ID 103291. https://doi.org/10.1016/j.bioorg.2019.103291

  5. Mei, H., Han, J., White, S., Graham, D.J., Izawa, K., Sato, T., Fustero, S., Meanwell, N.A., and Solosho­nok, V.A., Chem. Eur. J., 2020, vol. 26, p. 11349. https://doi.org/10.1002/chem.202000617

    Article  CAS  PubMed  Google Scholar 

  6. Nosova, E.V., Lipunova, G.N., Charushin, V.N., and Chupakhin, O.N., J. Fluorine Chem., 2010, vol. 131, p. 1267. https://doi.org/10.1016/j.jfluchem.2010.09.007

    Article  CAS  Google Scholar 

  7. Yerien, D.E., Bonesi, S., and Postigo, A., Org. Biomol. Chem., 2016, vol. 14, p. 8398. https://doi.org/10.1039/c6ob00764c

    Article  CAS  PubMed  Google Scholar 

  8. Ferraboschi, P., Ciceri, S., and Grisenti, P., Org. Prep. Proced. Int., 2017, vol. 49, p. 69. https://doi.org/10.1080/00304948.2017.1290994

    Article  CAS  Google Scholar 

  9. Qiu, X.-L., Xu, X.-H., and Qing, F.-L., Tetrahedron, 2010, vol. 66, p. 789. https://doi.org/10.1016/j.tet.2009.11.001

    Article  CAS  Google Scholar 

  10. Mykhailiuk, P.K., Chem. Rev., 2021, vol. 121, p. 1670. https://doi.org/10.1021/acs.chemrev.0c01015

    Article  CAS  PubMed  Google Scholar 

  11. Postigo, A., Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates, Postigo, A., Ed., Amsterdam: Elsevier, 2019, p. 1. https://doi.org/10.1016/B978-0-12-812958-6.00001-X

  12. Zaikin, P.A. and Borodkin, G.I., Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates, Postigo, A., Ed., Amsterdam: Elsevier, 2019, p. 105. https://doi.org/10.1016/B978-0-12-812958-6.00003-3

  13. Gillis, E.P., Eastmann, K.J., Hill, M.D., Donnelly, D.J., and Meanwell, N.A., J. Med. Chem., 2015, vol. 58, p. 8315. https://doi.org/10.1021/acs.jmedchem.5b00258

    Article  CAS  PubMed  Google Scholar 

  14. Liang, T., Neumann, C.N., and Ritter, T., Angew. Chem., Int. Ed., 2013, vol. 52, p. 8214. https://doi.org/10.1002/anie.201206566

    Article  CAS  Google Scholar 

  15. Champagne, P.A., Desroches, J., Hamel, J.-D., Vandamme, M., and Paquin, J.-F., Chem. Rev., 2015, vol. 115, p. 9073. https://doi.org/10.1021/cr500706a

    Article  CAS  PubMed  Google Scholar 

  16. Kohlhepp, S.V. and Gulder, T., Chem. Soc. Rev., 2016, vol. 45, p. 6270. https://doi.org/10.1039/c6cs00361c

    Article  CAS  PubMed  Google Scholar 

  17. Han, Z.-Z. and Zhang, C.-P., Adv. Synth. Catal., 2020, vol. 362, p. 4256. https://doi.org/10.1002/adsc.202000750

    Article  CAS  Google Scholar 

  18. Manley, J.B., Scalable Green Chemistry: Case Studies from the Pharmaceutical Industry, Koenig, S.G., Ed., Stanford: Taylor & Francis, 2013, p. 1.

  19. Sheldon, R.A., Pure Appl. Chem., 2000, vol. 72, p. 1233. https://doi.org/10.1351/pac200072071233

    Article  CAS  Google Scholar 

  20. Erythropel, H.C., Zimmerman, J.B., de Winter, T.M., Petitjean, L., Melnikov, F., Lam, C.H., Lounsbury, A.W., Mellor, K.E., Janković, N.Z., Tu, Q., Pincus, L.N., Falinski, M.M., Shi, W., Coish, P., Plata, D.L., and Anastas, P.T., Green Chem., 2018, vol. 20, p. 1929. https://doi.org/10.1039/c8gc00482j

    Article  CAS  Google Scholar 

  21. Borodkin, G.I. and Shubin, V.G., Russ. Chem. Rev., 2010, vol. 79, p. 259. https://doi.org/10.1070/RC2010v079n04ABEH004091

    Article  CAS  Google Scholar 

  22. Rozen, S., Advances in Organic Synthesis: Modern Organofluorine Chemistry—Synthetic Aspects, Atta-ur-Rahman and Laali, K.K., Eds., Bentham Science, 2006, vol. 2, p. 3. https://doi.org/10.2174/978160805198410602010003

  23. Sandford, G., J. Fluorine Chem., 2007, vol. 128, p. 90. https://doi.org/10.1016/j.jfluchem.2006.10.019

    Article  CAS  Google Scholar 

  24. Chambers, R.D., Holling, D., Spink, R.C.H., and Sandford, G., Lab Chip, 2001, vol. 1, p. 132. https://doi.org/10.1039/b108841f

    Article  CAS  PubMed  Google Scholar 

  25. McPake, C.B. and Sandford, G., Org. Process Res. Dev., 2012, vol. 16, p. 844. https://doi.org/10.1021/op200331s

    Article  CAS  Google Scholar 

  26. Kirk, K.L., Org. Process Res. Dev., 2008, vol. 12, p. 305. https://doi.org/10.1021/op700134j

    Article  CAS  Google Scholar 

  27. Shaw, M.M., Smith, R.G., and Ramsden, C.A., Arkivoc, 2011, vol. 2011, part (x), p. 221. https://doi.org/10.3998/ark.5550190.0012.a18

    Article  Google Scholar 

  28. Baudoux, J. and Cahard, D., Organic Reactions, Overman, L.E., Ed., Hoboken: Wiley, 2007, vol. 69, p. 347. https://doi.org/10.1002/0471264180.or069.02

  29. Lectard, S., Hamashima, Y., and Sodeoka, M., Adv. Synth. Catal., 2010, vol. 352, p. 2708. https://doi.org/10.1002/adsc.201000624

    Article  CAS  Google Scholar 

  30. Cao, L.-L., Gao, B.-L., Ma, S.-T., and Liu, Z.-P., Curr. Org. Chem., 2010, vol. 14, p. 889. https://doi.org/10.2174/138527210791111812

    Article  CAS  Google Scholar 

  31. Serdyuk, O.V., Abaev, V.T., Butin, A.V., and Nenajden­ko, V.G., Synthesis, 2011, vol. 2011, p. 2505. https://doi.org/10.1055/s-0030-1260088

    Article  CAS  Google Scholar 

  32. O’Leary, E.M., Jones, D.J., O’Donovan, F.P., and O’Sul­livan, T.P., J. Fluorine Chem., 2015, vol. 176, p. 93. https://doi.org/10.1016/j.jfluchem.2015.06.002

    Article  CAS  Google Scholar 

  33. Yang, X., Wu, T., Phipps, R.J., and Toste, F.D., Chem. Rev., 2015, vol. 115, p. 826. https://doi.org/10.1021/cr500277b

    Article  CAS  PubMed  Google Scholar 

  34. Nosova, E.V., Lipunova, G.N., Charushina, V.N., and Chupakhin, O.N., J. Fluorine Chem., 2018, vol. 212, p. 51. https://doi.org/10.1016/j.jfluchem.2018.05.012

    Article  CAS  Google Scholar 

  35. Yang, L., Dong, T., Revankar, H.M., and Zhang, C.-P., Green Chem., 2017, vol. 19, p. 3951. https://doi.org/10.1039/c7gc01566f

    Article  CAS  Google Scholar 

  36. Testa, C., Roger, J., Fleurat–Lessard, P., and Hierso, J.-C., Eur. J. Org. Chem., 2019, vol. 2019, p. 233. https://doi.org/10.1002/ejoc.201801138

    Article  CAS  Google Scholar 

  37. Szpera, R., Moseley, D.F.J., Smith, L.B., Sterling, A.J., and Gouverneur, V., Angew. Chem., Int. Ed., 2019, vol. 58, p. 14824. https://doi.org/10.1002/anie.201814457

    Article  CAS  Google Scholar 

  38. Li, X., Shi, X., Li, X., and Shi, D., Beilstein J. Org. Chem., 2019, vol. 15, p. 2213. https://doi.org/10.3762/bjoc.15.218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Auria-Luna, F., Mohammadi, S., Divar, M., Gimeno, M.C., and Herrera, R.P., Adv. Synth. Catal., 2020, vol. 362, p. 5275. https://doi.org/10.1002/adsc.202000848

    Article  CAS  Google Scholar 

  40. Sloop, J.C., Holder, C., and Henary, M., Eur. J. Org. Chem., 2015, vol. 2015, p. 3405. https://doi.org/10.1002/ejoc.201500258

    Article  CAS  Google Scholar 

  41. Fujita, T. and Ichikawa, J., Fluorine in Heterocyclic Chemistry. Volume 2: 6-Membered Heterocycles, Nenajdenko, V., Ed., Cham: Springer, 2014, p. 181. https://doi.org/10.1007/978-3-319-04435-4_4

  42. Serguchev, Y.A., Ponomarenko, M.V., and Ig­nat’ev, N.V., J. Fluorine Chem., 2016, vol. 185, p. 1. https://doi.org/10.1016/j.jfluchem.2016.02.010

    Article  CAS  Google Scholar 

  43. Gua, Q. and Vessally, E., RSC Adv., 2020, vol. 10, p. 16756. https://doi.org/10.1039/d0ra00324g

    Article  CAS  Google Scholar 

  44. Li, M., Zheng, H., Xue, X.-S., and Cheng, J.-P., Tetrahedron Lett., 2018, vol. 59, p. 1278. https://doi.org/10.1016/j.tetlet.2018.02.039

    Article  CAS  Google Scholar 

  45. Prat, D., Hayler, J., and Wells, A., Green Chem., 2014, vol. 16, p. 4546. https://doi.org/10.1039/c4gc01149j

    Article  CAS  Google Scholar 

  46. Song, H.-X., Han, Q.-Y., Zhao, C.-L., and Zhang, C.-P., Green Chem., 2018, vol. 20, p. 1662. https://doi.org/10.1039/c8gc00078f

    Article  CAS  Google Scholar 

  47. Borodkin, G.I. and Shubin, V.G., Russ. J. Org. Chem., 2006, vol. 42, p. 1745. https://doi.org/10.1134/S1070428006120013

    Article  CAS  Google Scholar 

  48. Pavlinac, J., Zupan, M., Laali, K.K., and Stavber, S., Tetrahedron, 2009, vol. 65, p. 5625. https://doi.org/10.1016/j.tet.2009.04.092

    Article  CAS  Google Scholar 

  49. Laali, K.K. and Borodkin, G.I., J. Chem. Soc., Perkin Trans. 2, 2002, p. 953. https://doi.org/10.1039/b111725d

  50. Rostami-Charati, F., Hossaini, Z., Khalilzadeh, M.A., and Jafaryan, H., J. Heterocycl. Chem., 2012, vol. 49, p. 217. https://doi.org/10.1002/jhet.785

    Article  CAS  Google Scholar 

  51. Hema, K. and Sureshan, K.M., Acc. Chem. Res., 2019, vol. 52, p. 3149. https://doi.org/10.1021/acs.accounts.9b00398

    Article  CAS  PubMed  Google Scholar 

  52. Nainwal, L.M., Tasneem, S., Akhtar, W., Verma, G., Khan, M.F., Parvez, S., Shaquiquzzaman, M., Akhter, M., and Alam, M.M., Eur. J. Med. Chem., 2019, vol. 164, p. 121. https://doi.org/10.1016/j.ejmech.2018.11.026

    Article  CAS  PubMed  Google Scholar 

  53. Tan, D. and Friščić, T., Eur. J. Org. Chem., 2018, vol. 2018, p. 18. https://doi.org/10.1002/ejoc.201700961

    Article  CAS  Google Scholar 

  54. Baig, R.B.N. and Varma, R.S., Chem. Soc. Rev., 2012, vol. 41, p. 1559. https://doi.org/10.1039/c1cs15204a

    Article  CAS  PubMed  Google Scholar 

  55. Sharma, A., Appukkuttana, and Van der Eycken, E., Chem. Commun., 2012, vol. 48, p. 1623. https://doi.org/10.1039/clcc15238f

    Article  CAS  Google Scholar 

  56. Kappe, C.O., Pieber, B., and Dallinger, D., Angew. Chem., Int. Ed., 2013, vol. 52, p. 1088. https://doi.org/10.1002/anie.201204103

    Article  CAS  Google Scholar 

  57. Martínez-Palou, R., Mol. Diversity, 2010, vol. 14, p. 3. https://doi.org/10.1007/s11030-009-9159-3

    Article  CAS  Google Scholar 

  58. Chatel, G., Top. Curr. Chem., 2016, vol. 374, article no. 51. https://doi.org/10.1007/s41061-016-0055-x

  59. Banerjee, B., Ultrason. Sonochem., 2017, vol. 35, part A, p. 1. https://doi.org/10.1016/j.ultsonch.2016.09.023

    Article  CAS  PubMed  Google Scholar 

  60. Banerjee, B., J. Serb. Chem. Soc., 2017, vol. 82, p. 755. https://doi.org/10.2298/JSC170217057B

    Article  CAS  Google Scholar 

  61. Yan, M., Kawamata, Y., and Baran, P.S., Chem. Rev., 2017, vol. 117, p. 13230. https://doi.org/10.1021/acs.chemrev.7b00397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fuchigami, N. and Tajima, T., J. Fluorine Chem., 2005, vol. 126, p. 181. https://doi.org/10.1016/j.jfluchem.2004.11.003

    Article  CAS  Google Scholar 

  63. Kathiresan, M. and Velayutham, D., Chem. Commun., 2015, vol. 51, p. 17499. https://doi.org/10.1039/c5cc06961k

    Article  CAS  Google Scholar 

  64. Borodkin, G.I. and Shubin, V.G., Russ. Chem. Rev., 2019, vol. 88, p. 160. https://doi.org/10.1070/RCR4833

    Article  CAS  Google Scholar 

  65. Fukuzumi, S. and Ohkubo, K., Org. Biomol. Chem., 2014, vol. 12, p. 6059. https://doi.org/10.1039/c4ob00843j

    Article  CAS  PubMed  Google Scholar 

  66. Prier, C.K., Rankic, D.A., and MacMillan, D.W.C., Chem. Rev., 2013, vol. 113, p. 5322. https://doi.org/10.1021/cr300503r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Halperin, S.D., Fan, H., Chang, S., Martin, R.E., and Britton, R., Angew. Chem., Int. Ed., 2014, vol. 53, p. 4690. https://doi.org/10.1002/anie.201400420

    Article  CAS  Google Scholar 

  68. Staveness, D., Bosque, I., and Stephenson, C.R.J., Acc. Chem. Res., 2016, vol. 49, p. 2295. https://doi.org/10.1021/acs.accounts.6b00270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rubinski, M.A., Lopez, S.E., and Dolbier, W.R., Jr., J. Fluorine Chem., 2019, vol. 224, p. 80. https://doi.org/10.1016/j.jfluchem.2019.05.009

    Article  CAS  Google Scholar 

  70. Holling, D., Sandford, G., Batsanov, A.S., Yufit, D.S., and Howard, J.A.K., J. Fluorine Chem., 2005, vol. 126, p. 1377. https://doi.org/10.1016/j.jfluchem.2005.07.007

    Article  CAS  Google Scholar 

  71. Chambers, R.D., Holling, D., Sandford, G., Batsa­nov, A.S., and Howard, J.A.K., J. Fluorine Chem., 2004, vol. 125, p. 661. https://doi.org/10.1016/j.jfluchem.2003.11.012

    Article  CAS  Google Scholar 

  72. Sandford, G., Modern Synthesis Processes and Reactivity of Fluorinated Compounds, Groult, H., Tressaud, A., and Leroux, F.R., Amsterdam: Elsevier, 2017, p. 339. https://doi.org/10.1016/B978-0-12-803740-9.00012-3

  73. Abele, S., Schmidt, G., Fleming, M.J., and Steiner, H., Org. Process Res. Dev., 2014, vol. 18, p. 993. https://doi.org/10.1021/op500100b

    Article  CAS  Google Scholar 

  74. Chambers, R.D., Fox, M.A., and Sandford, G., Lab Chip, 2005, vol. 5, p. 1132. https://doi.org/10.1039/b504675k

    Article  CAS  PubMed  Google Scholar 

  75. Vints, I. and Rozen, S., J. Org. Chem., 2014, vol. 79, p. 7261. https://doi.org/10.1021/jo5009542

    Article  CAS  PubMed  Google Scholar 

  76. Dalinger, I.L., Shkineva, T.K., Vatsadze, I.A., Popova, G.P., and Shevelev, S.A., Mendeleev Commun., 2011, vol. 21, p. 48. https://doi.org/10.1016/j.mencom.2011.01.020

    Article  CAS  Google Scholar 

  77. Harsanyi, A., Conte, A., Pichon, L., Rabion, A., Grenier, S., and Sandford, G., Org. Process Res. Dev., 2017, vol. 21, p. 273. https://doi.org/10.1021/acs.oprd.6b00420

    Article  CAS  Google Scholar 

  78. Poleschner, H. and Seppelt, K., Angew. Chem., Int. Ed., 2013, vol. 52, p. 12838. https://doi.org/10.1002/anie.201307161

    Article  CAS  Google Scholar 

  79. Lothian, A.P., Ramsden, C.A., Shaw, M.M., and Smith, R.G., Tetrahedron, 2011, vol. 67, p. 2788. https://doi.org/10.1016/j.tet.2011.02.016

    Article  CAS  Google Scholar 

  80. Boyd, E., Jones, R.V.H., Quayle, P., and Waring, A.J., Tetrahedron Lett., 2006, vol. 47, p. 7983. https://doi.org/10.1016/j.tetlet.2006.08.122

    Article  CAS  Google Scholar 

  81. Thanna, S., Lindenberger, J.J., Gaitonde, V.V., Ronning, D.R., and Sucheck, S.J., Org. Biomol. Chem., 2015, vol. 13, p. 7542. https://doi.org/10.1039/c5ob00867k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kumamoto, H., Fukano, M., Nakano, T., Iwagami, K., Takeyama, C., Kohgo, S., Imoto, S., Amano, M., Kuwata-Higashi, N., Aoki, M., Abe, H., Mitsuya, H., Fukuhara, K., and Haraguchi, K., J. Org. Chem., 2016, vol. 81, p. 2827. https://doi.org/10.1021/acs.joc.6b00105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, G., Org. Biomol. Chem., 2012, vol. 10, p. 6243. https://doi.org/10.1039/c2ob25702e

    Article  CAS  PubMed  Google Scholar 

  84. Keglevich, A., Hegedus, L., Péter, L., Gyenese, J., Szántay, C., Dubrovay, Z., Dékány, M., Szigetvári, Á, Martins, A., Molnár, J., Hunyadi, A., Keglevich, P., and Hazai, L., Curr. Org. Chem., 2016, vol. 20, p. 2639. https://doi.org/10.2174/1385272820666160617080202

    Article  CAS  Google Scholar 

  85. Huang, S., Tian, J., Qi, X., Wang, K., and Zhang, Q., Chem. Eur. J., 2017, vol. 23, p. 12787. https://doi.org/10.1002/chem.201702451

    Article  CAS  PubMed  Google Scholar 

  86. Zhai, L., Fan, X., Wang, B., Huo, H., Bi, F., Li, Y., and Ma, L. CN Patent no. 105859649A, 2016; Chem. Abstr., 2016, vol. 165, no. 317150

  87. Luk’yanov, O.A., Pokhvisneva, G.V., and Terniko­va, T.V., RU Patent no. 2581050, 2016; Chem. Abstr., 2016, vol. 164, no. 472551.

  88. Horne, D.B., Bartberger, M.D., Kaller, M.R., Monen­schein, H., Zhong, W., and Hitchcock, S.A., Tetrahedron Lett., 2009, vol. 50, p. 5452. https://doi.org/10.1016/j.tetlet.2009.07.060

    Article  CAS  Google Scholar 

  89. Bayne, J.M., Holthausen, M.H., and Stephan, D.W., Dalton Trans., 2016, vol. 45, p. 5949. https://doi.org/10.1039/c5dt03796d

    Article  CAS  PubMed  Google Scholar 

  90. Isago, H. and Kagaya, Y., Inorg. Chem., 2012, vol. 51, p. 8447. https://doi.org/10.1021/ic301002s

    Article  CAS  PubMed  Google Scholar 

  91. Khisamutdinov, G.K., Okhlobystina, L.V., and Fainzil’berg, A.A., Russ. Chem. Bull., Int. Ed., 2009, vol. 58, p. 2182. https://doi.org/10.1007/s11172-009-0300-3

    Article  CAS  Google Scholar 

  92. Azad, B.B., Ashique, R., Chirakal, R., and Schro­bilgen, G.J., J. Fluorine Chem., 2008, vol. 129, p. 22. https://doi.org/10.1016/j.jfluchem.2007.08.004

    Article  CAS  Google Scholar 

  93. Zhang, R., McCarter, J.D., Braun, C., Yeung, W., Brayer, G.D., and Withers, S.G., J. Org. Chem., 2008, vol. 73, p. 3070. https://doi.org/10.1021/jo702565q

    Article  CAS  PubMed  Google Scholar 

  94. Gatenyo, J., Hagooly, Y., Vints, I., and Rozen, S., Org. Biomol. Chem., 2012, vol. 10, p. 1856. https://doi.org/10.1039/c2ob06799d

    Article  CAS  PubMed  Google Scholar 

  95. Sun, H.M., Liu, Z.P., and Tang, L.Q., Chin. Chem. Lett., 2008, vol. 19, p. 907. https://doi.org/10.1016/j.cclet.2008.05.036

    Article  CAS  Google Scholar 

  96. Iskra, J., Stavber, S., and Zupan, M., Collect. Czech. Chem. Commun., 2008, vol. 73, p. 1671. https://doi.org/10.1135/cccc20081671

    Article  CAS  Google Scholar 

  97. Gakh, A.A., Top. Heterocycl. Chem., 2012, vol. 27, p. 33. https://doi.org/10.1007/7081_2011_58

    Article  CAS  Google Scholar 

  98. Luzzio, F.A., Adv. Heterocycl. Chem., 2020, vol. 132, p. 2. https://doi.org/10.1016/bs.aihch.2020.02.001

    Article  CAS  Google Scholar 

  99. Troegel, B. and Lindel, T., Org. Lett., 2012, vol. 14, p. 468. https://doi.org/10.1021/ol2029993

    Article  CAS  PubMed  Google Scholar 

  100. Heeran, D. and Sandford, G., Tetrahedron, 2016, vol. 72, p. 2456. https://doi.org/10.1016/j.tet.2016.03.067

    Article  CAS  Google Scholar 

  101. Heeran, D. and Sandford, G., Eur. J. Org. Chem., 2019, vol. 2019, p. 2339. https://doi.org/10.1002/ejoc.201900185

    Article  CAS  Google Scholar 

  102. Levchenko, V, Dmytriv, Y.V., Tymtsunik, A.V., Liubchak, K., Rudnichenko, A., Melnyk, A.V., Veselovych, S.Y., Borodulin, Y.V., Otsalyuk, O.M., Tolmachev, A.A., and Mykhailiuk, P.K., J. Org. Chem., 2018, vol. 83, p. 3265. https://doi.org/10.1021/acs.joc.8b00199

    Article  CAS  PubMed  Google Scholar 

  103. Jiang, Z., Ni, T., Wei, C., Tian, S., Li, Y., Dai, L., Liu, H., and Zhang, D., Synlett, 2013, vol. 24, p. 215. https://doi.org/10.1055/s-0032-1317934

    Article  CAS  Google Scholar 

  104. Albertshofer, K. and Mani, N.S., J. Org. Chem., 2016, vol. 81, p. 1269. https://doi.org/10.1021/acs.joc.5b02592

    Article  CAS  PubMed  Google Scholar 

  105. Masood, M., Bazin, M., Bunnage, M.E., Calabrese, A., Cox, M., Fancy, S.-A., Farrant, E., Pearce, D.W., Perez, M., Hitzel, L., and Peakman, T., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 1255. https://doi.org/10.1016/j.bmcl.2011.11.033

    Article  CAS  PubMed  Google Scholar 

  106. Sloop, J.C., Jackson, J.L., and Schmidt, R.D., Heteroat. Chem., 2009, vol. 20, p. 341. https://doi.org/10.1002/hc.20556

    Article  CAS  Google Scholar 

  107. Reddy, N.S., Kumar, N.R., Swaroop, D.K., Punna, N., Dev, G.J., Babu, N.J., and Narsaiah, B., Eur. J. Org. Chem., 2019, vol. 2019, p. 2409. https://doi.org/10.1002/ejoc.201900173

    Article  CAS  Google Scholar 

  108. Breen, J.R., Sandford, G., Patel, B., and Fray, J., Synlett, 2015, vol. 26, p. 51. https://doi.org/10.1055/s-0034-1378915

    Article  CAS  Google Scholar 

  109. Bonacorso, H.G., Pittaluga, E.P., Porte, L.M.F., Libero, F.M., Junges, A.F., Zanatta, N., and Martins, M.A.P., Synlett, 2015, vol. 26, p. 2009. https://doi.org/10.1055/s-0034-1381050

    Article  CAS  Google Scholar 

  110. Walton, L.A., Duplain, H.R., Knapp, A.L., Eidell, C.K., Bacsa, J., and Stepens, C.E., J. Fluorine Chem., 2015, vol. 173, p. 12. https://doi.org/10.1016/j.jfluchem.2015.01.003

    Article  CAS  Google Scholar 

  111. Bao, X., Wei, S., Zou, L., Song, Y., Qu, J., and Wang, B., Tetrahedron: Asymmetry, 2016, vol. 27, p. 436. https://doi.org/10.1016/j.tetasy.2016.03.013

    Article  CAS  Google Scholar 

  112. Sato, K., Sandford, G., Shimizu, K., Akiyama, S., Lancashire, M.J., Yufit, D.S., Tarui, A., Omote, M., Kumadaki, I., Harusawa, S., and Ando, A., Tetrahedron, 2016, vol. 72, p. 1690. https://doi.org/10.1016/j.tet.2016.02.026

    Article  CAS  Google Scholar 

  113. Meng, W.-T., Zheng, Y., Nie, J., Xiong, H.-Y., and Ma, J.-A., J. Org. Chem., 2013, vol. 78, p. 559. https://doi.org/10.1021/jo302419e

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, H., Wang, B., Cui, L., Bao, X., Qu, J., and Song, Y., Eur. J. Org. Chem., 2015, vol. 2015, p. 2143. https://doi.org/10.1002/ejoc.201500046

    Article  CAS  Google Scholar 

  115. Wu, J.-W., Li, F., Zheng, Y., and Nie, J., Tetrahedron Lett., 2012, vol. 53, p. 4828. https://doi.org/10.1016/j.tetlet.2012.06.110

    Article  CAS  Google Scholar 

  116. Phaenok, S., Soorukram, D., Kuhakarn, C., Reutrakul, V., and Pohmakotr, M., Eur. J. Org. Chem., 2015, vol. 2015, p. 2879. https://doi.org/10.1002/ejoc.201500023

    Article  CAS  Google Scholar 

  117. Badland, M., Compere, D., Courte, K., Dublan­chet, A.-C., Blais, S., Manage, A., Peron, G., and Wrigglesworth, R., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 528. https://doi.org/10.1016/j.bmcl.2010.10.087

    Article  CAS  PubMed  Google Scholar 

  118. Mattson, M., Int. Patent Appl. no. WO2011115758A1, 2011; Chem. Abstr., 2011, vol. 155, no. 457661.

  119. Zhou, G., Tian, Y., Zhao, X., and Dan, W., Org. Lett., 2018, vol. 20, p. 4858. https://doi.org/10.1021/acs.orglett.8b02003

    Article  CAS  PubMed  Google Scholar 

  120. Fields, S.C., Lo, W.C., Brewster, W.K., and Lowe, C.T., Tetrahedron Lett., 2010, vol. 51, p. 79. https://doi.org/10.1016/j.tetlet.2009.10.089

    Article  CAS  Google Scholar 

  121. Danahy, K.E., Cooper, J.C., and Van Humbeck, J.F., Angew. Chem., Int. Ed., 2018, vol. 57, p. 5134. https://doi.org/10.1002/anie.201801280

    Article  CAS  Google Scholar 

  122. Fischer, P., Morris, M., Muller-Bunz, H., and Evans, P., Eur. J. Org. Chem., 2020, vol. 2020, p. 1165. https://doi.org/10.1002/ejoc.202000026

    Article  CAS  Google Scholar 

  123. Chang, M.-Y., Lee, N.-C., Lee, M.-F., Huang, Y.-P., and Lin, C.-H., Tetrahedron Lett., 2010, vol. 51, p. 5900. https://doi.org/10.1016/j.tetlet.2010.08.090

    Article  CAS  Google Scholar 

  124. Pikun, N.V., Sobolev, A., Plreliece, A., Rucins, M., Vigante, B., Petrova, M., Muhamadejev, R., Pajuste, K., and Shermolovich, Y.G., Molecules, 2020, vol. 25, article no. 3143. https://doi.org/10.3390/molecules25143143

  125. Sakurai, F., Yukawa, T., and Taniguchi, T., Org. Lett., 2019, vol. 21, p. 7254. https://doi.org/10.1021/acs.orglett.9b02482

    Article  CAS  PubMed  Google Scholar 

  126. Liu, J., Chan, J., Bryant, C.M., Duspara, P.A., Lee, E.E., Powell, D., Yang, H., Liu, Z., Walpole, C., Roberts, E., and Batey, R.A., Tetrahedron Lett., 2012, vol. 53, p. 2971. https://doi.org/10.1016/j.tetlet.2012.03.074

    Article  CAS  Google Scholar 

  127. Borodkin, G.I., Elanov, I.R., and Shubin, V.G., Russ. J. Org. Chem., 2014, vol. 50, p. 1064. https://doi.org/10.1134/S1070428014070252

    Article  CAS  Google Scholar 

  128. Borodkin, G.I., Elanov, I.R., and Shubin, V.G., Rus. J. Org. Chem., 2015, vol. 51, p. 1003. https://doi.org/10.1134/S1070428015070180

    Article  CAS  Google Scholar 

  129. Borodkin, G.I., Elanov, I.R., Gatilov, Y.V., and Shubin, V.G., RSC Adv., 2016, vol. 6, p. 60556. https://doi.org/10.1039/c6ra10850d

    Article  CAS  Google Scholar 

  130. Rangwala, H.S., Giraldes, J.W., and Gurvich, V.J., J. Labelled Compd. Radiopharm., 2011, vol. 54, p. 340. https://doi.org/10.1002/jlcr.1872

    Article  CAS  Google Scholar 

  131. Rauniyar, V., Lackner, A.D., Hamilton, G.L., and Toste, F.D., Science, 2011, vol. 334, p. 1681. https://doi.org/10.1126/science.1213918

    Article  CAS  PubMed  Google Scholar 

  132. Harsanyi, A., Luckener, A., Pasztor, H., Yilmaz, Z., Tam, L., Yufit, D.S., and Sandford, G., Eur. J. Org. Chem., 2020, vol. 2020, p. 3872. https://doi.org/10.1002/ejoc.202000503

    Article  CAS  Google Scholar 

  133. Lozano, O., Blessley, G., del Campo, T.M., Thompson, A.L., Giuffredi, G.T., Bettati, M., Walker, M., Borman, R., and Gouverneur, V., Angew. Chem., Int. Ed., 2011, vol. 50, p. 8105. https://doi.org/10.1002/anie.201103151

    Article  CAS  Google Scholar 

  134. Liang, X.-W., Cai, Y., and You, S.-L., Chin. J. Chem., 2018, vol. 36, p. 925. https://doi.org/10.1002/cjoc.201800319

    Article  CAS  Google Scholar 

  135. Zhang, Y., Yang, X.-J., Xie, T., Chen, G.-L., Zhu, W.-H., Zhang, X.-Q., Yang, X.-Y., Wu, X.-Y., He, X.-P., and He, H.-M., Tetrahedron, 2013, vol. 69, p. 4933. https://doi.org/10.1016/j.tet.2013.04.037

    Article  CAS  Google Scholar 

  136. Jiang, X., Wang, H., He, H., Wang, W., Wang, Y., Ke, Z., and Yeung, Y.-Y., Adv. Synth. Catal., 2018, vol. 360, p. 4710. https://doi.org/10.1002/adsc.201801133

    Article  CAS  Google Scholar 

  137. Nguyen, T.M., Duong, H.A., Richard, J.-A., Johannes, C.W., Pincheng, F., Ye, D.K.J., and Shuying, E.L., Chem. Commun., 2013, vol. 49, p. 10602. https://doi.org/10.1039/c3cc46564k

    Article  CAS  Google Scholar 

  138. Fujiwara, T., Seki, T., Yakura, T., and Takeuchi, Y., J. Fluorine Chem., 2014, vol. 165, p. 7. https://doi.org/10.1016/j.jfluchem.2014.05.011

    Article  CAS  Google Scholar 

  139. Lin, R., Ding, S., Shi, Z., and Jiao, N., Org. Lett., 2011, vol. 13, p. 4498. https://doi.org/10.1021/ol201896p

    Article  CAS  PubMed  Google Scholar 

  140. Jiang, X., Zhang, F., Yang, J., Yu, P., Yi, P., Sun, Y., and Wang, Y., Adv. Synth. Catal., 2017, vol. 359, p. 853. https://doi.org/10.1002/adsc.201600786

    Article  CAS  Google Scholar 

  141. Alcaide, B., Almendros, P., Cembelln, S., del Campo, T.M., and Muñoz, A., Chem. Commun., 2016, vol. 52, p. 6813. https://doi.org/10.1039/c6cc02012g

    Article  CAS  Google Scholar 

  142. Yang, Q., Dai, G.-L., Yang, Y.-M., Luo, Z., and Tang, Z.-Y., J. Org. Chem., 2018, vol. 83, p. 6762. https://doi.org/10.1021/acs.joc.8b00737

    Article  CAS  PubMed  Google Scholar 

  143. Sun, X., Zhao, X.-J., and Wu, B., Asian J. Org. Chem., 2017, vol. 6, p. 690. https://doi.org/10.1002/ajoc.201700099

    Article  CAS  Google Scholar 

  144. Lim, Y.H., Ong, Q., Duong, H.A., Nguyen, T.M., and Johannes, C.W., Org. Lett., 2012, vol. 14, p. 5676. https://doi.org/10.1021/ol302666d

    Article  CAS  PubMed  Google Scholar 

  145. Bora, P.P., Bihani, M., Plummer, S., Gallou, F., and Handa, S., ChemSusChem, 2019, vol. 12, p. 3037. https://doi.org/10.1002/cssc.201900316

    Article  CAS  PubMed  Google Scholar 

  146. Liu, P., Gao, Y., Gu, W., Shen, Z., and Sun, P., J. Org. Chem., 2015, vol. 80, p. 11559. https://doi.org/10.1021/acs.joc.5b01961

    Article  CAS  PubMed  Google Scholar 

  147. Wang, M., Liu, X., Zhou, L., Zhu, J., and Sun, X., Org. Biomol. Chem., 2015, vol. 13, p. 3190. https://doi.org/10.1039/c4ob02691h

    Article  CAS  PubMed  Google Scholar 

  148. Gu, X., Zhang, Y., Xu, Z.-J., and Che, C.-M., Chem. Commun., 2014, vol. 50, p. 7870. https://doi.org/10.1039/c4cc01631a

    Article  CAS  Google Scholar 

  149. Yuan, X., Yao, J.-F., and Tang, Z.-Y., Org. Lett., 2017, vol. 19, p. 1410. https://doi.org/10.1021/acs.orglett.7b00335

    Article  CAS  PubMed  Google Scholar 

  150. Wang, D., Yuan, Z., Liu, Q., Chen, P., and Liu, G., Chin. J. Chem., 2018, vol. 36, p. 507. https://doi.org/10.1002/cjoc.201800016

    Article  CAS  Google Scholar 

  151. Zhu, C.-L., Fu, X.-Y., Wei, A.-J., Cahard, D., and Ma, J.-A., J. Fluorine Chem., 2013, vol. 150, p. 60. https://doi.org/10.1016/j.jfluchem.2013.03.007

    Article  CAS  Google Scholar 

  152. Meanwell, M., Adluri, B.S., Yuan, Z., Newton, J., Prevost, P., Nodwell, M.B., Friesen, C.M., Schaffer, P., Martin, R.E., and Britton, R., Chem. Sci., 2018, vol. 9, p. 5608. https://doi.org/10.1039/c8sc01221k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Egorov, I.N., Santra, S., Kopchuk, D.S., Kovalev, I.S., Zyryanov, G.V., Majee, A., Ranu, B.C., Rusinov, V.L., and Chupakhin, O.N., Green Chem., 2020, vol. 22, p. 302. https://doi.org/10.1039/c9gc03414e

    Article  CAS  Google Scholar 

  154. Howard, J.L., Cao, Q., and Browne, D.L., Chem. Sci., 2018, vol. 9, p. 3080. https://doi.org/10.1039/c7sc05371a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tan, D. and Friščić, T., Eur. J. Org. Chem., 2018, vol. 2018, p. 18. https://doi.org/10.1002/ejoc.201700961

    Article  CAS  Google Scholar 

  156. Howard, J.L., Nicholson, W., Sagatov, Y., and Browne, D.L., Beilstein J. Org. Chem., 2017, vol. 13, p. 1950. https://doi.org/10.3762/bjoc.13.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hatfield, J.M., Eidell, C.K., and Stephens, C.E., Tetrahedron Lett., 2013, vol. 54, p. 1025. https://doi.org/10.1016/j.tetlet.2012.12.052

    Article  CAS  Google Scholar 

  158. Wang, Y., Wang, H., Jiang, Y., Zhang, C., Shao, J., and Xu, D., Green Chem., 2017, vol. 19, p. 1674. https://doi.org/10.1039/c6gc03306g

    Article  CAS  Google Scholar 

  159. Li, Y., Wu, Y., Li, G.-S., and Wang, X.-S., Adv. Synth. Catal., 2014, vol. 356, p. 1412. https://doi.org/10.1002/adsc.201400101

    Article  CAS  Google Scholar 

  160. Petrone, D.A., Ye, J., and Lautens, M., Chem. Rev., 2016, vol. 116, p. 8003. https://doi.org/10.1021/acs.chemrev.6b00089

    Article  CAS  PubMed  Google Scholar 

  161. Szpera, R., Moseley, D.F.J., Smith, L.B., Sterling, A.J., and Gouverneur, V., Angew. Chem., Int. Ed., 2019, vol. 58, p. 14824. https://doi.org/10.1002/anie.201814457

    Article  CAS  Google Scholar 

  162. Sather, A.C. and Buchwald, S.L., Acc. Chem. Res., 2016, vol. 49, p. 2146. https://doi.org/10.1021/acs.accounts.6b00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dykstra, K.D., Ichiishi, N., Krska, S.W., and Richardson, P.F., Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agro­chemicals, Haufe, G. and Leroux, F.R., Eds., Amsterdam: Elsevier, 2019, p. 1. https://doi.org/10.1016/B978-0-12-812733-9.00001-5

  164. Furuya, T., Kamlet, A.S., and Ritter, T., Nature, 2011, vol. 473, p. 470. https://doi.org/10.1038/nature10108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hickman, A.J. and Sanford, M.S., Nature, 2012, vol. 484, p. 177. https://doi.org/10.1038/nature11008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Testa, C., Gigot, É., Genc, S., Decréau, R., Roger, J., and Hierso, J.-C., Angew. Chem., Int. Ed., 2016, vol. 55, p. 5555. https://doi.org/10.1002/anie.201601082

    Article  CAS  Google Scholar 

  167. Lou, S.-J., Xu, D.-Q., Xia, A.-B., Wang, Y.-F., Liu, Y.-K., Du, X.-H., and Xu, Z.-Y., Chem. Commun., 2013, vol. 49, p. 6218. https://doi.org/10.1039/c3cc42220h

    Article  CAS  Google Scholar 

  168. Ding, Q., Ye, C., Pu, S., and Cao, B., Tetrahedron, 2014, vol. 70, p. 409. https://doi.org/10.1016/j.tet.2013.11.034

    Article  CAS  Google Scholar 

  169. Wang, C., Cai, J., Zhang, M., and Zhao, X., J. Org. Chem., 2017, vol. 82, p. 1260. https://doi.org/10.1021/acs.joc.6b02624

    Article  CAS  PubMed  Google Scholar 

  170. Ding, J., Zhang, Y., and Li, J., Org. Chem. Front., 2017, vol. 4, p. 1528. https://doi.org/10.1039/c7qo00211d

    Article  CAS  Google Scholar 

  171. Luo, S.-S., Su, L.-J., Jiang, Y., Li, X.-B., Li, Z.-H., Sun, H., and Liu, J.-K., Synlett, 2018, vol. 29, p. 1525. https://doi.org/10.1055/s-0037-1610130

    Article  CAS  Google Scholar 

  172. Shao, Q. and Huang, Y., Chem. Commun., 2015, vol. 51, p. 6584. https://doi.org/10.1039/c5cc01407g

    Article  CAS  Google Scholar 

  173. Simonneau, A., Garcia, P., Goddard, J.-P., Mouries-Mansuy, V., Malacria, M., and Fensterbank, L., Beilstein J. Org. Chem., 2011, vol. 7, p. 1379. https://doi.org/10.3762/bjoc.7.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fier, P.S. and Hartwig, J.F., Science, 2013, vol. 342, p. 956. https://doi.org/10.1126/science.1243759

    Article  CAS  PubMed  Google Scholar 

  175. Fier, P.S. and Hartwig, J.F., Org. Synth., 2017, vol. 94, p. 46. https://doi.org/10.15227/orgsyn.094.0046

    Article  CAS  Google Scholar 

  176. Toshio, F., Nippon Noyaku Gakkaishi, 2016, vol. 41, p. 19. https://doi.org/10.1584/jpestics.W15-35

    Article  Google Scholar 

  177. Takahira, Y., Chen, Y.M., Mykhailiuk, K.P., Naka­mura, H., Petersa, B.K., Reisberg, S.H., Li, C., Chen, L., Hoshikawa, T., Shibuguchi, T., and Baran, P.S., Synlett, 2019, vol. 30, p. 1178. https://doi.org/10.1055/s-0037-1611737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fuchigami, T. and Inagi, S., Acc. Chem. Res., 2020, vol. 53, p. 322. https://doi.org/10.1021/acs.accounts.9b00520

    Article  CAS  PubMed  Google Scholar 

  179. Kuribayashi, S., Shida, N., Inagi, S., and Fuchigami, T., Tetrahedron, 2016, vol. 72, p. 5343. https://doi.org/10.1016/j.tet.2016.07.016

    Article  CAS  Google Scholar 

  180. Gryaznova, T.V., Khrizanforova, V.V., Kholin, K.V., Khrizanforov, M.N., and Budnikova, Yu.H., Russ. Chem. Bull., Int. Ed., 2016, vol. 65, p. 1798. https://doi.org/10.1007/s11172-016-1513-x

    Article  CAS  Google Scholar 

  181. Kuribayashi, S., Kurioka, T., Inagi, S., Lu, H.-J., Uang, B.-J., and Fuchigami, T., Beilstein J. Org. Chem., 2018, vol. 14, p. 389. https://doi.org/10.3762/bjoc.14.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Roslin, S. and Odell, L.R., Eur. J. Org. Chem., 2017, vol. 2017, p. 1993. https://doi.org/10.1002/ejoc.201601479

    Article  CAS  Google Scholar 

  183. Marzo, L., Pagire, S.K., Reiser, O., and König, B., Angew. Chem., Int. Ed., 2018, vol. 57, p. 10034. https://doi.org/10.1002/anie.201709766

    Article  CAS  Google Scholar 

  184. Pitts, C.R., Bloom, M.S., Bume, D.D., Zhang, Q.A., and Lectka, T., Chem. Sci., 2015, vol. 6, p. 5225. https://doi.org/10.1039/c5sc01973g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bloom, S., Knippel, J.L., and Lectka, T., Chem. Sci., 2014, vol. 5, p. 1175. https://doi.org/10.1039/c3sc53261e

    Article  CAS  Google Scholar 

  186. Ventre, S., Petronijevic, F.R., and MacMillan, D.W.C., J. Am. Chem. Soc., 2015, vol. 137, p. 5654. https://doi.org/10.1021/jacs.5b02244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rueda–Becerril, M., Mahé, O., Drouin, M., Majewski, M.B., West, J.G., Wolf, M.O., Sammis, G.M., and Paquin, J.-F., J. Am. Chem. Soc., 2014, vol. 136, p. 2637. https://doi.org/10.1021/ja412083f

    Article  CAS  PubMed  Google Scholar 

  188. González-Esguevillas, M., Miró, J., Jeffrey, J.L., and MacMillan, D.W.C., Tetrahedron, 2019, vol. 75, p. 4222. https://doi.org/10.1016/j.tet.2019.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This review was prepared under financial support by the Russian Foundation for Basic Research (project no. 20-03-00700A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Borodkin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 9, pp. 1209–1242 https://doi.org/10.31857/S0514749221090019.

Dedicated to the memory of Full Member of the Russian Academy of Sciences V. A. Koptyug (1931–1997)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodkin, G.I., Shubin, V.G. Electrophilic and Oxidative Fluorination of Heterocyclic Compounds: Contribution to Green Chemistry. Russ J Org Chem 57, 1369–1397 (2021). https://doi.org/10.1134/S1070428021090013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021090013

Keywords:

Navigation