Skip to main content
Log in

Syntheses of bimetallic lanthanide bis(amido) complexes stabilized by bridged bis(guanidinate) ligands and their catalytic activity toward the hydrophosphonylation reaction of aldehydes and ketones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of bimetallic lanthanide bis(amido) complexes stabilized by bridged bis(guanidinate) ligands {[(Me3Si)2N]2Ln[(RN)2-CN(CH2)2]}2 [R=iPr, Ln=Sm (1), Yb (2), Y (3); R=cyclohexyl (Cy), Ln=Sm (4), and Yb (5)] were synthesized through the metathesis reactions of {Ln(µ-Cl)[N(SiMe3)2]2(THF)}2 (Ln=Sm, Yb, Y) with lithium guanidinate {Li[(RN)2CN(CH2)2]}2 (R=iPr, Cy), the latter of which was generated in situ by the reaction of carbodiimides with lithium amides. Complexes 15 were well characterized by elemental analyses, IR spectra, and (for Complex 3) NMR spectroscopy. The solid-state molecular structures of all of the complexes were determined by single-crystal X-ray analyses with the exception of Complex 3, which showed similar unsolvated centrosymmetric dinuclear structures. Each of the lanthanide centers is four-coordinated with two nitrogen atoms from a guanidinate ligand and two nitrogen atoms from two amido groups. The piperazidine rings adopt chair conformations in all cases. These organolanthanide complexes were found to be efficient catalysts for the hydrophosphonylation reaction of various aldehydes and unactivated ketones and to afford α-hydroxyphosphonates in high yields under low catalyst loading (0.1 mol%) in a short reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edelmann FT. Lanthanide amidinates and guanidinates: from laboratory curiosities to efficient homogeneous catalysts and precursors for rare-earth oxide thin films. Chem Soc Rev, 2009, 38: 2253–2268

    Article  CAS  Google Scholar 

  2. Edelmann FT. Lanthanide amidinates and guanidinates in catalysis and materials science: a continuing success story. Chem Soc Rev, 2012, 41: 7657–7672

    Article  CAS  Google Scholar 

  3. Trifonov AA, Skvortsov GG, Lyubov DM, Skorodumova NA, Fukin GK, Baranov EV, Glushakova VN. Postmetallocene lanthanide-hydrido chemistry: a new family of complexes [{Ln{(Me3Si)2-NC(NiPr)2}2(µ-H)}2] (Ln=Y, Nd, Sm, Gd, Yb) supported by guanidinate ligands-synthesis, structure, and catalytic activity in olefin polymerization. Chem Eur J, 2006, 12: 5320–5327

    Article  CAS  Google Scholar 

  4. Lyubov DM, Fukin GK, Trifonov AA. N,N′-diisopropyl-N″-bis(trimethylsilyl) guanidinate ligand as a supporting coordination environment in yttrium chemistry. Synthesis, structure, and properties of complexes [(Me3Si)2NC(Ni-Pr)2]YCl2(THF)2, [(Me3Si)2NC(Ni-Pr)2]Y(CH2Si-Me3)2(THF)2, and [(Me3Si)2NC(Ni-Pr)2]Y[(µ-H)(µ-Et)2BEt]2(THF). Inorg Chem, 2007, 46: 11450–11456

    Article  CAS  Google Scholar 

  5. Cui P, Chen Y, Li G, Xia W. An ansa-heteroborabenzene divalent lanthanide amide through C-H bond cleavage. Angew Chem Int Ed, 2008, 47: 9944–9947

    Article  CAS  Google Scholar 

  6. Lu Z, Yap GPA, Richeson DS. Tetrasubstituted guanidinate anions as supporting ligands in organoyttrium chemistry. Organometallics, 2001, 20: 706–712

    Article  CAS  Google Scholar 

  7. Trifonov AA, Lyubov DM, Fukin GK, Baranov EV, Kurskii YA. Alkylyttrium complexes supported by N,N′-dicyclohexyl-N″-bis(trimethylsilyl) guanidinate ligands. Organometallics, 2006, 25: 3935–3942

    Article  CAS  Google Scholar 

  8. Ge S, Meetsma A, Hessen B. Highly efficient hydrosilylation of alkenes by organoyttrium catalysts with sterically demanding amidinate and guanidinate ligands. Organometallics, 2008, 27: 3131–3135

    Article  CAS  Google Scholar 

  9. Luo Y, Yao Y, Shen Q. [(SiMe3)2NC(NiPr)2]2Ln(µ-Me)2Li(TMEDA) (Ln=Nd, Yb) as effective single-component initiators for styrene polymerization. Macromolecules, 2002, 35: 8670–8671

    Article  CAS  Google Scholar 

  10. Luo Y, Yao Y, Shen Q, Yu K, Weng L. Synthesis and characterization of lanthanide(III) bis(guanidinate) derivatives and the catalytic activity of methyllanthanide bis(guanidinate) complexes for the polymerization of ɛ-caprolactone and methyl methacrylate. Eur J Inorg Chem, 2003: 318–323

    Google Scholar 

  11. Trifonov AA, Lyubov DM, Fedorova EA, Fukin GK, Schumann H, Mühle S, Hummert M, Bochkarev MN. Chloro, alkyl and aryl complexes of rare earth metals supported by bulky tetrasubstituted guanidinate ligands. Eur J Inorg Chem, 2006: 747–756

    Google Scholar 

  12. Zhang J, Zhou X, Cai R, Weng L. Reactivity of organolanthanide and organolithium complexes containing the guanidinate ligands toward isocyanate or carbodiimide: synthesis and crystal structures. Inorg Chem, 2005, 44: 716–722

    Article  CAS  Google Scholar 

  13. Zhang Z, Zhang L, Li Y, Hong L, Chen Z, Zhou X. Activation of bis(guanidinate)lantha-nide alkyl and aryl complexes on elemental sulfur: synthesis and characterization of bis(guanidinate)lanthanide thiolates and disulfides. Inorg Chem, 2010, 49: 5715–5722

    Article  CAS  Google Scholar 

  14. Yao Y, Luo Y, Chen J, Zhang Z, Zhang Y, Shen Q. Synthesis and characterization of bis(guanidinate)lanthanide diisopropylamido complexes: new highly active initiators for the polymerizations of ɛ-caprolactone and methyl methacrylate. J Organomet Chem, 2003, 679: 229–237

    Article  CAS  Google Scholar 

  15. Giesbrecht GR, Whitener GD, Arnold J. Monoguanidinate complexes of lanthanum: synthesis, structure and their use in lactide polymerization. J Chem Soc, Dalton Trans, 2001: 923–927

    Google Scholar 

  16. Wang Y, Luo Y, Chen J, Xue H, Liang H. Synthesis of mono(guanidinate) rare earth metal bis(amide) complexes and their performance in the ring-opening polymerization of L-lactide and rac-lactide. New J Chem, 2012, 36: 933–940

    Article  CAS  Google Scholar 

  17. Ajellal N, Lyubov DM, Sinenkov MA, Fukin GK, Cherkasov AV, Thomas CM, Carpentier JF, Trifonov AA. Bis(guanidinate) alkoxide complexes of lanthanides: synthesis, structures and use in immortal and stereoselective ring-opening polymerization of cyclic esters. Chem Eur J, 2008, 14: 5440–5448

    Article  CAS  Google Scholar 

  18. Cao Y, Du Z, Li W, Li J, Zhang Y, Xu F, Shen Q. Activation of carbodiimide and transformation with amine to guanidinate group by Ln(OAr)3(THF)2 (Ln: lanthanide and yttrium) and Ln(OAr)3(THF)2 as a novel precatalyst for addition of amines to carbodiimides: influence of aryloxide group. Inorg Chem, 2011, 50: 3729–3737

    Article  CAS  Google Scholar 

  19. Qian C, Zhang X, Li J, Xu F, Zhang Y, Shen Q. Trisguanidinate lanthanide complexes: syntheses, structures, and catalytic activity for mild amidation of aldehydes with amines. Organometallics, 2009, 28: 3856–3862

    Article  CAS  Google Scholar 

  20. Zhang X, Wang C, Qian C, Han F, Xu F, Shen Q. Heterobimetallic dianionic guanidinate complexes of lanthanide and lithium: highly efficient precatalysts for catalytic addition of amines to carbodiimides to synthesize guanidines. Tetrahedron, 2011, 67: 8790–8799

    Article  CAS  Google Scholar 

  21. Zhang X, Wang C, Xue M, Zhang Y, Shen Q. Synthesis and structure of samarium benzyl complex supported by bridged bis(guanidinate) ligand and its reactivity toward nitriles and phenyl isocyanate. J Organomet Chem, 2012, 716: 86–94

    Article  CAS  Google Scholar 

  22. Wang C, Zhang X, Xue M, Zhang Y, Shen Q. Unprecedented reaction of bridged bis(guanidinate) lanthanide complexes: sterically induced deprotonation. Dalton Trans, 2013, 42: 7009–7018

    Article  CAS  Google Scholar 

  23. Wang C, Zhang X, Xue M, Zhang Y, Shen Q. Synthesis of a naphthalene-bridged bis(guanidinato)ytterbium(II) complex and an unexpected pathway in its reaction with CH3CN, p-ClC6H4CH2CN, and Ph2CHCN. Organometallics, 2013, 32: 3618–3624

    Article  CAS  Google Scholar 

  24. Zhang Z, Xu X, Sun S, Yao Y, Zhang Y, Shen Q. Facile syntheses of bimetallic ytterbium bisamides stabilized by a flexible bridged bis(phenolato) ligand and the high activity for the polymerization of L-lactide. Chem Commun, 2009: 7414–7416

    Google Scholar 

  25. Li W, Wu W, Wang Y, Yao Y, Zhang Y, Shen Q. Bimetallic aluminum alkyl complexes as highly active initiators for the polymerization of ɛ-caprolactone. Dalton Trans, 2011, 40: 11378–11381

    Article  CAS  Google Scholar 

  26. Li W, Zhang Z, Yao Y, Zhang Y, Shen Q. Control of conformations of piperazidine-bridged bis(phenolato) groups: syntheses and structures of bimetallic and monometallic lanthanide amides and their application in the polymerization of lactides. Organometallics, 2012, 31: 3499–3511

    Article  CAS  Google Scholar 

  27. Sun S, Nie K, Tan Y, Zhao B, Zhang Y, Shen Q, Yao Y. Bimetallic lanthanide amido complexes as highly active initiators for the ring-opening polymerization of lactides. Dalton Trans, 2013, 42: 2870–2878

    Article  CAS  Google Scholar 

  28. Sun S, Sun Q, Zhao B, Zhang Y, Shen Q, Yao Y. Unexpected C-H bond activation promoted by bimetallic lanthanide amido complexes bearing a META-phenylene-bridged bis(β-diketiminate) ligand. Organometallics, 2013, 32: 1876–1881

    Article  CAS  Google Scholar 

  29. Sun S, Ouyang H, Luo Y, Zhang Y, Shen Q, Yao Y. Synthesis of β-diketiminate-ligated bimetallic and monometallic lanthanide amide complexes and their reactivity with isoprene and AlMe3. Dalton Trans, 2013, 42: 16355–16364

    Article  CAS  Google Scholar 

  30. Nie K, Feng T, Song F, Zhang Y, Sun H, Yuan D, Yao Y, Shen Q. Bimetallic amine-bridged bis(phenolate) lanthanide aryloxides and alkoxides: synthesis, characterization, and application in the ring-opening polymerization of rac-lactide and rac-β-butyrolactone. Sci China Chem, 2014, 57: 1106–1116

    Article  Google Scholar 

  31. Li L, Metz M, Li H, Chen M, Marks T, Liable-Sands L, Rheingold A. Catalyst/cocatalyst nuclearity effects in single-site polymerization. Enhanced polyethylene branching and α-olefin comonomer enchainment in polymerizations mediated by binuclear catalysts and cocatalysts via a new enchainment pathway. J Am Chem Soc, 2002, 124: 12725–12741

    Article  CAS  Google Scholar 

  32. Li H, Li L, Marks T, Liable-Sands L, Rheingold A. Catalyst/cocatalyst nuclearity effects in single-site olefin polymerization. Significantly enhanced 1-octene and isobutene comonomer enchainment in ethylene polymerizations mediated by binuclear catalysts and cocatalysts. J Am Chem Soc, 2003, 125: 10788–10789

    Article  CAS  Google Scholar 

  33. Guo N, Li L, Marks T. Bimetallic catalysis for styrene homopolymerization and ethylene-styrene copolymerization. Exceptional comonomer selectivity and insertion regiochemistry. J Am Chem Soc, 2004, 126: 6542–6543

    Article  CAS  Google Scholar 

  34. Salata M, Marks T. Synthesis, characterization, and marked polymerization selectivity characteristics of binuclear phenoxyiminato organozirconium catalysts. J Am Chem Soc, 2008, 130: 12–13

    Article  CAS  Google Scholar 

  35. Rodriguez B, Delferro M, Marks T. Bimetallic effects for enhanced polar comonomer enchainment selectivity in catalytic ethylene polymerization. J Am Chem Soc, 2009, 131: 5902–5919

    Article  CAS  Google Scholar 

  36. Aspinall HC, Bradley DC, Hursthouse MB, Sales KD, Walker NPC, Hussain B. Preparation of the bis(trimethylsilyl)amido lanthanide chlorides [{Ln[N(SiMe3)2]2(µ-Cl)(THF)}2] (THF=tetrahydrofuran), and the crystal and molecular structures of the gadolinium and ytterbium complexes. J Chem Soc, Dalton Trans, 1989: 623–626

    Google Scholar 

  37. Karl M, Seybert G, Massa W, Agarwal S, Greiner A, Dehnicke K. Kristallstrukturen der samarium-amido-komplexe [Sm(µ-X){N-(SiMe3)2}2(THF]2 mit X=Cl, Br. Z Anorg Allg Chem, 1999, 625: 1405–1407

    Article  CAS  Google Scholar 

  38. Niemeyer M. Synthesis and structural characterization of several ytterbium bis(trimethylsilyl)amides including base-free [Yb{N(SiMe3)2}2(µ-Cl)]2—a coordinatively unsaturated complex with additional agostic Yb⋯(H3C-Si) interactions. Z Anorg Allg Chem, 2002, 628: 647–657

    Article  CAS  Google Scholar 

  39. Pattison I, Wade K, Wyatt BK. Azomethine derivatives. Part V. Reactions between organolithium compounds and diphenylketimine, some cyanides, and N,N,N′,N′-tetramethylguanidine. J Chem Soc A, 1968: 837–842

    Google Scholar 

  40. Atwood JL, Hunter WE, Wayda AL, Evans WJ. Synthesis and crystallographic characterization of a dimeric alkynide-bridged organolanthanide: [(C5H5)2ErC ≡ CC(CH3)3]2. Inorg Chem, 1981, 20: 4115–4119

    Article  CAS  Google Scholar 

  41. Szymańska A, Szymczak M, Boryski J, Stawiński J, Kraszewski A, Collu G, Sanna G, Giliberti G, Loddo R, Colla PL. Aryl nucleoside h-phosphonates. Part 15: synthesis, properties and, anti-HIV activity of aryl nucleoside 5′-α-hydroxyphosphonates. Bioorg Med Chem, 2006, 14: 1924–1934

    Article  Google Scholar 

  42. Demmer CS, Krogsgaard-Larsen N, Bunch L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem Rev, 2011, 111: 7981–8006

    Article  CAS  Google Scholar 

  43. Pudovik AN, Arbuzov B. Addition of dialkyl phosphites to unsaturated ketones, nitriles, and esters. Dokl Akad Nauk SSSR, 1950, 73: 327–329

    CAS  Google Scholar 

  44. Pudovik AN, Konovalova IV. Addition reactions of esters of phosphorus acids with unsaturated systems. Synthesis, 1979, 1979: 81–96

    Article  Google Scholar 

  45. Gröger H, Hammer B. Catalytic concepts for the enantioselective synthesis of α-amino and α-hydroxy phosphonates. Chem Eur J, 2000, 6: 943–948

    Article  Google Scholar 

  46. Merino P, Marqués-López E, Herrera RP. Catalytic enantioselective hydrophosphonylation of aldehydes and imines. Adv Synth Catal, 2008, 350: 1195–1208

    Article  CAS  Google Scholar 

  47. Keglevich G, Sipos M, Takács D, Greiner I. A study on the michael addition of dialkylphosphites to methylvinylketone. Heteroatom Chem, 2007, 18: 226–229

    Article  CAS  Google Scholar 

  48. Kharasch MS, Mosher RA, Bengelsdorf IS. Organophosphorus chemistry. Addition reactions of diethyl phosphonate and the oxidation of triethyl phosphite1. J Org Chem, 1960, 25: 1000–1006

    Article  CAS  Google Scholar 

  49. Gancarz R, Gancarz I, Walkowiak U. On the reversibility of hydroxyphosphonate formation in the kabachnik-fields reaction. Phosphorus Sulfur, 1995, 104: 45–52

    Article  CAS  Google Scholar 

  50. Wu Q, Zhou J, Yao Z, Xu F, Shen Q. Lanthanide amides [(Me3Si)2N]3Ln(µ-Cl)Li(THF)3 catalyzed hydrophosphonylation of aryl aldehydes. J Org Chem, 2010, 75: 7498–7501

    Article  CAS  Google Scholar 

  51. Liu C, Qian Q, Nie K, Wang Y, Shen Q, Yuan D, Yao Y. Lanthanide anilido complexes: synthesis, characterization, and use as highly efficient catalysts for hydrophosphonylation of aldehydes and unactivated ketones. Dalton Trans, 2014, 43: 8355–8362

    Article  CAS  Google Scholar 

  52. Zhou S, Wang H, Ping J, Wang S, Zhang L, Zhu X, Wei Y, Wang F, Feng Z, Gu X, Yang S, Miao H. Synthesis and characterization of organolanthanide complexes with a calix[4]-pyrrolyl ligand and their catalytic activities toward hydrophosphonylation of aldehydes and unactivated ketones. Organometallics, 2012, 31: 1696–1702

    Article  CAS  Google Scholar 

  53. Zhou S, Wu Z, Rong J, Wang S, Yang G, Zhu X, Zhang L. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes. Chem Eur J, 2012, 18: 2653–2659

    Article  CAS  Google Scholar 

  54. Zhu X, Wang S, Zhou S, Wei Y, Zhang L, Wang F, Feng Z, Guo L, Mu X. Lanthanide amido complexes incorporating amino-coordinatelithium bridged bis(indolyl) ligands: synthesis, characterization, and catalysis for hydrophosphonylation of aldehydes and aldimines. Inorg Chem, 2012, 51: 7134–7143

    Article  CAS  Google Scholar 

  55. Miao H, Zhou S, Wang S, Zhang L, Wei Y, Yang S, Wang F, Chen Z, Chen Y, Yuan Q. Rare-earth metal amido complexes supported by bridged bis(β-diketiminato) ligand as efficient catalysts for hydrophosphonylation of aldehydes and ketones. Sci China Chem, 2013, 56: 329–336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Nie or Yingming Yao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, K., Liu, C., Zhang, Y. et al. Syntheses of bimetallic lanthanide bis(amido) complexes stabilized by bridged bis(guanidinate) ligands and their catalytic activity toward the hydrophosphonylation reaction of aldehydes and ketones. Sci. China Chem. 58, 1451–1460 (2015). https://doi.org/10.1007/s11426-015-5407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5407-9

Keywords

Navigation