Skip to main content
Log in

Rare-earth metal amido complexes supported by bridged bis(β-diketiminato) ligand as efficient catalysts for hydrophosphonylation of aldehydes and ketones

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of rare-earth metal amides supported by a cyclohexyl-linked bis(β-diketiminato) ligand were synthesized, and their catalytic activities for hydrophosphonylation of aldehydes and ketones were developed. Reaction of [(Me3Si)2N]3RE(µ-Cl)Li(THF)3 with the cyclohexyl-linked bis(β-diketimine) H2L (1) (L = Cy[NC(Me)CHC(Me)NAr]2, Cy = cyclohexyl, Ar = 2, 6-i-Pr2C6H3) gave the rare-earth metal amides LREN(SiMe3)2 (RE = Nd(2), Sm(3), Dy(4), Er(5), Y(6)). All complexes were fully characterized by elemental, spectroscopic and single-crystal X-ray analyses. Investigation of the catalytic properties of the complexes reveals that these complexes exhibited a high catalytic activity towards the hydrophosphonylation of aldehydes and ketones in the presence of a very low loading of rare-earth metal amides (0.1–1 mol%) at room temperature in a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilderbrand RL. The Role of Phosphonates in Living Systems. Boca Raton, FL: RCRC Press, 1983

    Google Scholar 

  2. Engel R. Handbook of Organophosphorus Chemistry. New York: Marcel Dekker, 1992

    Google Scholar 

  3. Szymańska A, Szymczak M, Boryski J, Stawiński J, Kraszewski A, Collu G, Sanna G, Giliberti G, Loddo R, Colla PL. Aryl nucleoside H-phosphonates. Part 15: Synthesis, properties and, anti-HIV activity of aryl nucleoside 5′-α-hydroxyphosphonates. Bioorg Med Chem, 2006, 14: 1924–1934

    Article  Google Scholar 

  4. Pudovik AN, Konovalova IV. Addition reactions of esters of phosphorus( III) acids with unsaturated systems. Synthesis, 1979: 81–96

  5. Gröger H, Hammer B. Catalytic concepts for the enantioselective synthesis of α-amino and α-hydroxy phosphonates. Chem Eur J, 2000, 6: 943–948

    Article  Google Scholar 

  6. Merino P, Marqués-López E, Herrera, RP. Catalytic enantioselective hydrophosphonylation of aldehydes and imines. Adv Synth Catal, 2008, 350: 1195–1208

    Article  CAS  Google Scholar 

  7. Duxbury JP, Warne JND, Mushtaq R, Ward C, Thornton-Pett M, Jiang M, Greatrex R, Kee TP. Phospho-aldol catalysis via chiral schiff base complexes of aluminum. Organometallics, 2000, 19: 4445–4457

    Article  CAS  Google Scholar 

  8. Saito B, Egami H, Katsuki T. Synthesis of an optically active Al(salalen) complex and its application to catalytic hydrophosphonylation of aldehydes and aldimines. J Am Chem Soc, 2007, 129: 1978–1986

    Article  CAS  Google Scholar 

  9. Zhou X, Liu X, Yang X, Shang, Xin J, Feng X. Highly enantioselective hydrophosphonylation of aldehydes catalyzed by tridentate Schiff base aluminum(III) complexes. Angew Chem Int Ed, 2008, 47: 392–394

    Article  CAS  Google Scholar 

  10. Corey EJ, Lee TW. The formyl C-H...O hydrogen bond as a critical factor in enantioselective Lewis-acid catalyzed reactions of aldehydes. Chem Commun, 2001: 1321–1329

  11. Suyama K, Sakai Y, Matsumoto K, Saito B, Katsuki T. Highly enantioselective hydrophosphonylation of aldehydes: Base-enhanced aluminum-salalen catalysis. Angew Chem Int Ed, 2010, 49: 797–799

    Article  CAS  Google Scholar 

  12. Yokomatsu T, Yamgishi T, Shibuya S. Enantioselective hydrophosphonylation of aromatic aldehydes catalyzed by chiral titanium alkoxides. Tetrahedron:Asymmetry, 1993, 4: 1779–1782

    Article  CAS  Google Scholar 

  13. Groaning MD, Rowe BJ, Spilling CD. New homochiral cyclic diol ligands for titanium alkoxide catalyzed phosphonylation of aldehydes. Tetrahedron Lett, 1998, 39: 5485–5488

    Article  CAS  Google Scholar 

  14. Yang F, Zhao D, Lan J, Xi P, Yang L, Xiang S, You J. Self-assembled bifunctional catalysis induced by metal coordination interactions: An exceptionally efficient approach to enantioselective hydrophosphonylation. Angew Chem Int Ed, 2008, 47: 5646–5649

    Article  CAS  Google Scholar 

  15. Yokomatsu T, Yamgishi T, Shibuya S. Enantioselective synthesis of α-hydroxyphosphonates through asymmetric pudovik reactions with chiral lanthanoid and titanium alkoxides. J Chem Soc, Perkin Trans, 1997: 1527–1533

  16. Arai T, Bougauchi M, Sasai H, Shibasaki M. Catalytic asymmetric synthesis of α-hydroxy phosphonates using the Al-Li-BINOL complex. J Org Chem, 1996, 61: 2926–2927

    Article  CAS  Google Scholar 

  17. Qian C, Huang T, Zhu C, Sun J. Synthesis of 3, 3′-, 6, 6′- and 3, 3′, 6, 6′-substituted binaphthols and their application in the asymmetric hydrophosphonylation of aldehydes—An obvious effect of substituents of BINOL on the enantioselectivity. J Chem Soc, Perkin Trans 1, 1998: 2097–2103

    Article  Google Scholar 

  18. Di Bari L, Lelli M, Salvadori P. Ligand lability and chirality inversion in Yb heterobimetallic catalysts. Chem Eur J, 2004, 10: 4594–4598

    Article  Google Scholar 

  19. Wu Q, Zhou J, Yao Z, Xu F, Shen Q. Lanthanide amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 catalyzed hydrophosphonylation of aryl aldehydes. J Org Chem, 2010, 75: 7498–7501

    Article  CAS  Google Scholar 

  20. Chen W, Hui Y, Zhou X, Jiang J, Cai Y, Liu X, Lin L, Feng X. Chiral N,N′-dioxide-Yb(III) complexes catalyzed enantioselective hydrophosphonylation of aldehydes. Tetrahedron Lett, 2010, 51: 4175–4178

    Article  CAS  Google Scholar 

  21. De Noronha RG, Costa PJ, Romão CC, Calhorda MJ, Fernandes AC. MoO2Cl2 as a novel catalyst for C-P bond formation and for hydrophosphonylation of aldehydes. Organometallics, 2009, 28: 6206–6212

    Article  Google Scholar 

  22. exier-Boullet F, Lequitte M. An unexpected reactivity of simple heterogeneous mixture of γ-alumina and potassium fluoride: 1-hydroxyalkane phosphonic esters synthesis from non-activated ketones in “dry media”. Tetrahedron Lett, 1986, 27: 3515–3516

    Article  Google Scholar 

  23. Sebti S, Rhihil A, Saber A, Laghrissi M, Boulaajaj S. Synthèse des α-hydroxyphosphonates sur des supports phosphatés en absence de solvant. Tetrahedron Lett, 1996, 37: 3999–4000

    Article  CAS  Google Scholar 

  24. Wang F, Liu X, Cui X, Xiong Y, Zhou X, Feng X. Asymmetric hydrophosphonylation of α-ketoesters catalyzed by cinchona-derived thiourea organocatalysts. Chem Eur J, 2009, 15: 589–592

    Article  CAS  Google Scholar 

  25. Kharasch MS, Mosher RA, Bengelsdorf IS. Organophosphorus chemistry. Addition reactions of diethyl phosphonate and the oxidation of triethyl phosphite. J Org Chem, 1960, 25: 1000–1006

    Article  CAS  Google Scholar 

  26. Simoni D, Invidiata FP, Manferdini M, Lampronti I, Rondanin R, Roberti M, Pollini GP. Tetramethylguanidine (TMG)-catalyzed addition of dialkyl phosphites to α,β-unsaturated carbonyl compounds, alkenenitriles, aldehydes, ketones and imines. Tetrahedron Lett, 1998, 39: 7615–7618

    Article  CAS  Google Scholar 

  27. Maeda H, Takahashi K, Ohmori H. Reactions of acyl tributylphosphonium chlorides and dialkyl acylphosphonates with grignard and organolithium reagents. Tetrahedron, 1998, 54: 12233–12242

    Article  CAS  Google Scholar 

  28. Zhou X, Liu Y, Chang L, Zhao J, Shang D, Liu X, Lin L, Feng X. Highly efficient synthesis of quaternary α-hydroxy phosphonates via Lewis acid-catalyzed hydrophosphonylation of ketones. Adv Synth Catal, 2009, 351: 2567–2572

    Article  CAS  Google Scholar 

  29. Zhou X, Zhang Q, Hui Y, Chen W, Jiang J, Lin L, Liu X, Feng X. Catalytic asymmetric synthesis of quaternary α-hydroxy trifluoromethyl phosphonate via chiral aluminum(III) catalyzed hydrophosphonylation of trifluoromethyl ketones. Org Lett, 2010, 12: 4296–4299

    Article  CAS  Google Scholar 

  30. Zhou S, Wu Z, Rong J, Wang S, Yang G, Zhu X, Zhang L. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes. Chem Eur J, 2012, 18: 2653–2659

    Article  CAS  Google Scholar 

  31. Zhou S, Wang H, Ping J, Wang S, Zhang L, Zhu X, Wei Y, Wang F, Feng Z, Gu X, Yang S, Miao H. Synthesis and characterization of organolanthanide complexes with a calix[4]-pyrrolyl ligand and their catalytic activities toward hydrophosphonylation of aldehydes and unactivated ketones. Organometallics, 2012, 31: 1696–1702

    Article  CAS  Google Scholar 

  32. Zhu X, Wang S, Zhou S, Wei Y, Zhang L, Wang F, Feng Z, Guo L, Mu X. Lanthanide amido complexes incorporating amino-coordinate-lithium bridged bis(indolyl) ligands: Synthesis, characterization, and catalysis for hydrophosphonylation of aldehydes and aldimines. Inorg Chem, 2012, 51: 7134–7143

    Article  CAS  Google Scholar 

  33. Bourget-Merle L, Lappert MF, Severn JR. The chemistry of β-diketiminatometal complexes, Chem Rev, 2002, 102: 3031–3065

    Article  CAS  Google Scholar 

  34. Zhang J, Zhang Z, Chen Z, Zhou X. Oxidation and coupling of β-diketiminate ligand in lanthanide complexes: Novel eight-nuclear lanthanide clusters with μ-, μ3-Cl, and μ4-O bridge. Dalton Trans, 2012, 41: 357–359

    Article  CAS  Google Scholar 

  35. Liu P, Zhang Y, Yao YM, Shen Q. Synthesis of dianionic β-diketiminate lanthanide amides L’LnN(SiMe3)2(THF) by deprotonation of the β-diketiminate ligand L (L = {[(2,6-iPr2C6H3)NC-(CH3)]2CH}) and the transformation with [HNEt3][BPh4] to the cationic samarium amide [LSmN(SiMe3)2][BPh4]. Organometallics, 2012, 31: 1017–1024

    Article  CAS  Google Scholar 

  36. Hayes PG, Piers WE, McDonald R. Cationic scandium methyl complexes supported by a β-diketiminato (“nacnac”) ligand framework, J Am Chem Soc, 2002, 124: 2132–2033

    Article  CAS  Google Scholar 

  37. Vitanova DV, Hampel F, Hultzsch KC. Synthesis and structural characterisation of novel linked bis(β-diketiminato) rare earth metal complexes. Dalton Trans, 2005: 1565–1566

  38. Yao YM, Zhang ZQ, Peng HM, Zhang Y, Shen Q, Lin J. Synthesis and structural characterization of β-diketiminate-lanthanide amides and their catalytic activity for the polymerization of methyl methacrylate and ε-caprolactone. Inorg Chem, 2006, 45: 2175–2183

    Article  CAS  Google Scholar 

  39. Vitanova DV, Hampel F, Hultzsch KC. Rare earth metal complexes based on β-diketiminato and novel linked bis(β-diketiminato) ligands: Synthesis, structural characterization and catalytic application in epoxide/CO2-copolymerization. J Organomet Chem, 2005, 690: 5182–5197

    Article  CAS  Google Scholar 

  40. Lauterwasser F, Hayes PG, Bräse S, Piers WE, Schafer, LL. Scandium-catalyzed intramolecular hydroamination. Development of a highly active cationic catalyst. Organometallics, 2004, 23: 2234–2237

    Article  CAS  Google Scholar 

  41. He X, Yao Z, Luo X, J. Zhang J, Liu Y, Zhang L, Wu Q. Nickel(II) complexes bearing N,O-chelate ligands: Synthesis, solid-structure characterization, and reactivity toward the polymerization of polar monomer. Organometallics, 2003, 22: 4952–4957

    Article  CAS  Google Scholar 

  42. Zhou S, Wang S, Yang G, Liu X, Sheng E, Zhang K, Cheng L, Huang Z. Synthesis, structure, and catalytic activity of tetracoordinate lanthanide amides [(Me3Si)2N]3Ln(µ-Cl)Li(THF)3 (Ln=Nd, Sm, Eu). Polyhedron, 2003, 22: 1019–1024

    Article  CAS  Google Scholar 

  43. Xie MH, Liu XY, Liu L, Wu YY, Wang, SW, Zhou SL, Sheng EH, Yang GS, Huang ZX. Synthesis, structure and catalytic activity comparison of tris- and tetracoordinated lanthanide amides. Chin J Chem, 2004, 22: 678–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShuangLiu Zhou or ShaoWu Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, H., Zhou, S., Wang, S. et al. Rare-earth metal amido complexes supported by bridged bis(β-diketiminato) ligand as efficient catalysts for hydrophosphonylation of aldehydes and ketones. Sci. China Chem. 56, 329–336 (2013). https://doi.org/10.1007/s11426-012-4789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4789-1

Keywords

Navigation