Skip to main content
Log in

Quantifying the dissolution of nanomaterials at the nano-bio interface

  • Mini Reviews
  • Special Topic Analytical Sciences at the Nano-Bio Interface
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the rapid development of nanoscience and nanotechnology, more engineered nanomaterials (NMs) are being released into the environment. Such releases might lead to unwanted exposure. The dissolution of NMs at nano-bio interfaces is one of the most noteworthy causes of the toxicity of dissolvable NMs. A growing number of studies are focusing assessing NMs dissolution during exposure tests. This mini review considers recent developments in the quantitative tools for the assessment of NMs dissolution, and highlights the critical points in the evaluation of the toxicity of dissolvable NMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin MN, Allen AJ, Maccuspie RI, Hackley VA. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir, 2014, 30: 11442–11452

    Article  CAS  Google Scholar 

  2. Leroueil PR, Berry SA, Duthie K, Han G, Rotello VM, Mcnerny DQ, Baker JR, Orr BG, Banaszak Holl MM. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett, 2008, 8: 420–424

    Article  CAS  Google Scholar 

  3. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 2009, 8: 543–557

    Article  CAS  Google Scholar 

  4. Zhang ZY, He X, Zhang HF, Ma YH, Zhang P, Ding YY, Zhao YL. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 2011, 3: 816–822

    Article  Google Scholar 

  5. Yang XY, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol, 2011, 46: 1119–1127

    Article  Google Scholar 

  6. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol, 2010, 100: 140–150

    Article  CAS  Google Scholar 

  7. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int, 2011, 37: 517–531

    Article  CAS  Google Scholar 

  8. Li YY, He X, Yin JJ, Ma YH, Zhang P, Li JY, Ding YY, Zhang J, Zhao YL, Chai ZF, Zhang Z. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew Chem Int Ed, 2015, 54: 1832–1835

    Article  CAS  Google Scholar 

  9. Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami Jones E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ, 2012, 438: 225–232

    Article  CAS  Google Scholar 

  10. Schultz AG, Boyle D, Chamot D, Ong KJ, Wilkinson KJ, Mcgeer JC, Sunahara G, Goss GG. Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environ Chem, 2014, 11: 207–226

    Article  CAS  Google Scholar 

  11. Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol, 2010, 44: 5649–5654

    Article  CAS  Google Scholar 

  12. Xu MS, Li J, Hanagata N, Su HX, Chen HZ, Fujita D. Challenge to assess the toxic contribution of metal cation released from nanomaterials for nanotoxicology: the case of ZnO nanoparticles. Nanoscale, 2013, 5: 4763–4769

    Article  CAS  Google Scholar 

  13. Wang P, Menzies NW, Lombi E, Mckenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol, 2013, 47: 13822–13830

    Article  CAS  Google Scholar 

  14. Shi JY, Abid AD, Kennedy IM, Hristova KR, Silk WK. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut, 2011, 159: 1277–1282

    Article  CAS  Google Scholar 

  15. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Ul Hasan MM. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol, 2010, 60: 75–80

    Article  CAS  Google Scholar 

  16. Qu Y, Li W, Zhou YL, Liu XF, Zhang LL, Wang LM, Li YF, Iida A, Tang ZY, Zhao YL. Full assessment of fate and physiologicalbehavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett, 2011, 11: 3174–3183

    Article  CAS  Google Scholar 

  17. Zhao F, Meng H, Yan L, Wang B, Zhao YL. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Chin Sci Bull, 2015, 60: 3–20

    CAS  Google Scholar 

  18. Zhao F, Hu B. Cancer therapy may get a boost from gold nanorods. Chin Sci Bull, 2014, 59: 1–2

    Article  Google Scholar 

  19. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol, 2006, 40: 4374–4381

    Article  CAS  Google Scholar 

  20. Pietruska JR, Liu XY, Smith A, Mcneil K, Weston P, Zhitkovich A, Hurt R, Kane AB. Bioavailability, intracellular mobilization of nickel, and HIF-1? activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci, 2011, 124: 138–148

    Article  CAS  Google Scholar 

  21. Dimkpa CO, Mclean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res, 2012, 14: 1–15

    Article  Google Scholar 

  22. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol, 2008, 42: 8959–8964

    Article  CAS  Google Scholar 

  23. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci, 2012, 125: 462–472

    Article  CAS  Google Scholar 

  24. Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett, 2012, 213: 249–259

    Article  CAS  Google Scholar 

  25. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol, 2014, 11: 11

    Article  Google Scholar 

  26. Jiang XM, Miclaus T, Wang LM, Foldbjerg R, Sutherland DS, Autrup H, Chen CY, Beer C. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 2015: 9: 181–189

    Article  CAS  Google Scholar 

  27. Rainville LC, Carolan D, Varela AC, Doyle H, Sheehan D. Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna. Analyst, 2014, 139: 1678–1686

    Article  CAS  Google Scholar 

  28. Ma YH, He X, Zhang P, Zhang ZY, Guo Z, Tai RZ, Xu ZJ, Zhang LJ, Ding YY, Zhao YL. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology, 2011, 5: 743–753

    Article  CAS  Google Scholar 

  29. Mortimer M, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 2010, 269: 182–189

    Article  CAS  Google Scholar 

  30. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett, 2004, 4: 11–18

    Article  CAS  Google Scholar 

  31. Kittler S, Greulich C, Diendorf J, Koller M, Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater, 2010, 22: 4548–4554

    Article  CAS  Google Scholar 

  32. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol, 2007, 41: 8484–8490

    Article  CAS  Google Scholar 

  33. Maurer EI, Sharma M, Schlager JJ, Hussain SM. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications. Nanotoxicology, 2014, 8: 718–727

    CAS  Google Scholar 

  34. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro, 2009, 23: 1076–1084

    Article  CAS  Google Scholar 

  35. Chao JB, Liu JF, Yu SJ, Feng YD, Tan ZQ, Liu R, Yin YG. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem, 2011, 83: 6875–6882

    Article  CAS  Google Scholar 

  36. Soto Alvaredo J, Montes Bayón M, Bettmer JR. Speciation of silver nanoparticles and silver (I) by reversed-phase liquid chromatography coupled to ICPMS. Anal Chem, 2013, 85: 1316–1321

    Article  Google Scholar 

  37. Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One, 2013, 8: e64060

    Article  Google Scholar 

  38. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One, 2013, 8: e53186

    Article  Google Scholar 

  39. Zhang P, Ma YH, Zhang ZY, He X, Zhang J, Guo Z, Tai RZ, Zhao YL, Chai ZF. Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 2012, 6: 9943–9950

    Article  CAS  Google Scholar 

  40. Lv JT, Zhang SZ, Luo L, Zhang J, Yang K, Christie P. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano, 2015, 2: 68–77

    Article  CAS  Google Scholar 

  41. Fulda B, Voegelin A, Ehlert K, Kretzschmar R. Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochim Cosmochim Acta, 2013, 123: 385–402

    Article  CAS  Google Scholar 

  42. Fabricius AL, Duester L, Meermann B, Ternes TA. ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Anal Bioanal Chem, 2014, 406: 467–479

    Article  CAS  Google Scholar 

  43. Gamarra LF. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials. Int J Nanomed, 2010, 5: 203–211

    Article  CAS  Google Scholar 

  44. Zysler RD, Lima Jr E, Mansilla MV, Troiani HE, Pisciotti ML, Gurman P, Lamagna A, Colombo L. A new quantitative method to determine the uptake of SPIONs in animal tissue and its application to determine the quantity of nanoparticles in the liver and lung of Balb-c mice exposed to the SPIONs. J Biomed Nanotechnol, 2013, 9: 142–145

    Article  CAS  Google Scholar 

  45. He X, Ma YH, Li M, Zhang P, Li YY, Zhang ZY. Quantifying and imaging engineered nanomaterials in vivo: challenges and techniques. Small, 2013, 9: 1482–1491

    Article  CAS  Google Scholar 

  46. Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown Jr GE, Lowry GV. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol, 2012, 46: 6992–7000

    Article  CAS  Google Scholar 

  47. Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel AE. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano, 2012, 6: 4921–4930

    Article  CAS  Google Scholar 

  48. Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ, Ding YY, Zhao YL, Chai ZF. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol, 2012, 46: 1834–1841

    Article  CAS  Google Scholar 

  49. He X, Pan YY, Zhang JZ, Li YY, Ma YH, Zhang P, Ding YY, Zhang J, Wu ZQ, Zhao YL. Quantifying the total ionic release from nanoparticles after particle-cell contact. Environ Pollut, 2015, 196: 194–200

    Article  CAS  Google Scholar 

  50. Ostermeyer AK, Kostigen Mumuper C, Semprini L, Radniecki T. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environ Sci Technol, 2013, 47: 14403–14410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao He, Zhenyu Wang or Zhiyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., He, X., Zhang, P. et al. Quantifying the dissolution of nanomaterials at the nano-bio interface. Sci. China Chem. 58, 761–767 (2015). https://doi.org/10.1007/s11426-015-5401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5401-2

Keywords

Navigation