Skip to main content
Log in

Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Protein protected gold nanoclusters have outstanding physical and chemical properties that make them excellent scaffolds for the construction of novel chemical and biological probes. In this study, a simple one-pot synthesis method was proposed for the preparation of fluorescent probes based on ovalbumin-stabilized gold nanoclusters. This strategy allowed the generation of water-soluble gold nanoclusters within 5 min. The as-prepared fluorescent probe exhibited a red fluorescence emission at 625 nm, and good thermostability. The fluorescent probe was applied to measure glucose concentrations based on the hydrogen peroxide-induced fluorescence quenching principle, and showed favorable biocompatibility, high sensitivity and good selectivity. As a result of the advantageous properties and performance of this fluorescent probe, the present assay allowed for the selective determination of glucose in the range of 5.0×10−6 to 10.0×10−3 mol/L with a detection limit of 1.0×10−6 mol/L. Moreover, the glucose content in urinary samples was analyzed using the constructed fluorescent probe: this indicated the potential of the fluorescent gold nanoclusters for applications in biological and clinical diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ, Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitivedetection of glucose. Biosens Bioelectron, 2011, 26: 1965–1969

    Article  CAS  Google Scholar 

  2. Wang J. Electrochemical glucose biosensors. Chem Rev, 2008, 108: 814–825

    Article  CAS  Google Scholar 

  3. Pickup JC, Hussain F, Evans ND, Rolinsk OJ, Birch DJS. Fluorescence-based glucose sensors. Biosens Bioelectron, 2005, 20: 2555–2565

    Article  CAS  Google Scholar 

  4. Yuan JP, Guo WW, Yin JY, Wang EK. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta, 2009, 77: 1858–1863

    Article  CAS  Google Scholar 

  5. Wen D, Zou XY, Liu Y, Shang L, Dong SJ. Nanocomposite based on depositing platinum nanostructure onto carbonnanotubes through a one-pot, facile synthesis method for amperometric sensing. Talanta, 2009, 79: 1233–1237

    Article  CAS  Google Scholar 

  6. Jiang Y, Zhao H, Lin YH, Zhu NN, Ma YR, Mao LQ. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew Chem Int Ed, 2010, 49: 4800–4804

    Article  CAS  Google Scholar 

  7. Jones DA, Parkin MC, Langemann H, Landolt H, Hopwood SE, Strong AJ, Boutelle MJ. On-line monitoring in neurointensive care enzyme-based electrochemical assay for simultaneous, continuous monitoring of glucose and lactate from critical care patients. J Electroanal Chem, 2002, 538: 243–252

    Article  Google Scholar 

  8. Cambre JN, Sumerlin BS. Biomedical applications of boronic acid polymers. Polymer, 2011, 52: 4631–4643

    Article  CAS  Google Scholar 

  9. Ngamdee K, Noipa T, Martwiset S, Tuntulani T, Ngeontae W. Enhancement of sensitivity of glucose sensors from alizarin-boronic acid adductsin aqueous micelles. Sensor Actuat B-Chem, 2011, 160: 129–138

    Article  CAS  Google Scholar 

  10. Wang LL, Qiao J, Liu HH, Hao J, Qi L, Zhou XP, Li D, Nie ZX, Mao LQ. Ratiometric fluorescent probe based on gold nanoclusters and alizarin red-boronic acid for monitoring glucose in brain microdialysate. Anal Chem, 2014, 86: 9758–9764

    Article  CAS  Google Scholar 

  11. Li L, Gao FF, Ye J, Chen ZZ, Li LQ, Gao W, Ji LF, Zhang RR, Tang B. Fret-based biofriendly apo-GOx-modified gold nanoprobe for specific and sensitive glucose sensing and cellular imaging. Anal Chem, 2013, 85: 9721–9727

    Article  CAS  Google Scholar 

  12. Lin CJ, Yang T, Lee C, Huang SH, Sperling RA, Zanella M, Li JK, Shen J, Wang H, Yeh H, Parak WJ, Chang WH. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano, 2009, 3: 395–401

    Article  CAS  Google Scholar 

  13. Sengupta B, Ritchie CM, Buckman JG, Johnsen KR, Goodwin PM, Petty JT. Based-directed formation of fluorescent silver clusters. J Phys Chem C, 2008, 112: 18776–18782

    Article  CAS  Google Scholar 

  14. Wu XF, Li RY, Li ZJ. Synthesis of gold nanoclusters/glucoseoxidase/graphene oxide multifunctional catalyst with surprisingly enhanced activity and stability and its application for glucose detection. RSC Adv, 2014, 4: 9935–9941

    Article  CAS  Google Scholar 

  15. Liu XQ, Wang FA, Niazov-Elkan A, Guo WW, Willner I. Probing biocatalytic transformations with luminescent DNA/silver nanoclusters. Nano Lett, 2013, 13: 309–314

    Article  Google Scholar 

  16. Gao XH, Li XH, Wan QQ, Li Z, Ma HH. Detection of glucose via enzyme-coupling reaction basedon a DT-diaphorasefluorescence probe. Talanta, 2014, 120: 456–461

    Article  CAS  Google Scholar 

  17. Tang B, Cao LH, Xu KH, Zhuo LH, Ge JC, Li QL, Yu LJ. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET)between CdTe quantum dots and Au nanoparticles. Chem Eur J, 2008, 14: 3637–3644

    Article  CAS  Google Scholar 

  18. Freeman R, Bahsh L, Finder T, Gill R, Willner I. Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots. Chem Commun, 2009: 764–766

    Google Scholar 

  19. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett, 2004, 4: 11–18

    Article  CAS  Google Scholar 

  20. Li JY, Shi LX, Shao YX, Selke M, Chen BA, Jiang H, Wang XM. The cellular labeling and pH-sensitive responsive-drug release of celastrol in cancer cells based on Cys-CdTe QDs. Sci China Chem, 2014, 57: 833–841

    Article  Google Scholar 

  21. Xie JP, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc, 2009, 131: 888–889

    Article  CAS  Google Scholar 

  22. Xia XD, Long YF, Wang JF. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal Chim Acta, 2013, 772: 81–86

    Article  CAS  Google Scholar 

  23. Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ. Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitivedetection of glucose. Biosens Bioelectron, 2011, 26: 1965–1969

    Article  CAS  Google Scholar 

  24. Hussaina AMP, Sarang SN, Kesarwani JA, Sahu SN. Au-nanocluster emission based glucose sensing. Biosens Bioelectron, 2011, 29: 60–65

    Article  Google Scholar 

  25. Qiao J, Mu XY, Qi L, Deng JJ, Mao LQ. Folic acid-functionalized fluorescent gold nanoclusters with polymer as linker for cancer cells imaging. Chem Commun, 2013, 49: 8030–8032

    Article  CAS  Google Scholar 

  26. Wei XY, Qi L, Tan JJ, Liu RG, Wang FY. Glucose oxidase-functionalized fluorescent goldnanoclusters as probes for glucose. Anal Chim Acta, 2010, 671: 80–84

    Article  CAS  Google Scholar 

  27. Shang L, Yang LX, Stockmar F, Popescu R, Trouillet V, Bruns R, Gerthsen D, Nienhaus GU. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale, 2012, 4: 4155–4160

    Article  CAS  Google Scholar 

  28. Shang L, Wang YZ, Jiang JG, Dong SJ. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir, 2007, 23: 2714–2721

    Article  CAS  Google Scholar 

  29. Yang J, Qi L, Ma HM, Chen Y. Fabrication of nylon membrane based microfluidic chipsand its application in color sensing of glucose (in Chinese). Chem J Chin U, 2012, 11: 2405–2410

    Google Scholar 

  30. Luo DY, Smith SW, Anderson BD. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pharm Sci, 2004, 94: 304–316

    Article  Google Scholar 

  31. Ling Y, Zhang N, Qu F, Wen T, Gao ZF, Li NB, Luo HQ. Fluorescent detection of hydrogen peroxide and glucosewith polyethyleneimine-templated Cu nanoclusters. Spectrochim Acta A, 2014, 118: 315–320

    Article  CAS  Google Scholar 

  32. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC. Self-assembled monolayers of thiols and dithiols on gold: new challengesfor a well-known system. Chem Soc Rev, 2010, 39: 1805–1834

    Article  CAS  Google Scholar 

  33. Chen DH, Gao SP, UR RF, Jiang H, WANG XM. In-situ green synthesis of highly active GSH-capped Pt-Au-Ag-hybrid nanoclusters. Sci China Chem, 2014, 57: 1532–1537

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Qi or Dan Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LL., Qiao, J., Qi, L. et al. Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose. Sci. China Chem. 58, 1508–1514 (2015). https://doi.org/10.1007/s11426-015-5354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5354-5

Keywords

Navigation